

Hardware Implementation of a Wireless
Backscatter Communication Protocol for

Brain-Controlled Spinal Interfaces
Anand Sekar, Laura Arjona, James Rosenthal, Joshua R. Smith, Chet T. Moritz

Abstract​—​Brain-Controlled Spinal Interfaces are innovative medical devices which can aid physical rehabilitation to
restore volitional movement in areas paralyzed by cervical Spinal Cord Injury. The device entails reading neural
signals in the motor cortex, decoding the intention to perform a specific movement from those signals, and stimulating
the spinal cord when movement is intended. Decoding the neural signals is computationally-intensive and therefore
power-hungry, making portable devices difficult to implement. A wireless implementation of a Brain-Controlled
Spinal Interface consisting of an external computer (reader) which utilizes backscatter communication to collect data
from an implanted neural sensor (implant) can perform that intensive computation. This thesis focuses on the
hardware, implant-side implementation of the wireless backscatter communication protocol on a low-power FPGA.
Index Terms​—​BCSI, BCI, backscatter communication, FM0, neural implant, Verilog

Acknowledgements

I would like to express my gratitude to Dr. Joshua Smith for
overseeing my research and Dr. Chet Moritz for bringing me
onto the Restorative Technologies Lab. My sincere thanks to
Nicholas Tolley and Soshi Samejima for showing me the
ropes with hands-on neural decoding. I would like to
recognize the invaluable guidance my mentors James
Rosenthal and Laura Arjona have provided through this
project.

This research would not have been possible without the
support from the Computational Neuroscience Training Grant
(CNTG) and the Center for Neurotechnology. I am grateful to
Dr. Eric Shea-Brown who introduced me to the extraordinary
field of computational neuroscience and persuaded me to
apply to the CNTG. I wish to thank the UW CSE
Departmental Honors program for motivating this thesis.

I acknowledge the contribution of all the amazing professors
at the University of Washington. Heartfelt thanks to my
friends and family for supporting me on this journey.

I. Introduction

The paper is organized as follows. §I introduces the problem
of spinal cord injury and the concept of neuroplasticity. §II
explains how a brain-controlled spinal interface is an effective
solution and how each component works. §III covers the

various ways brain-controlled spinal interfaces can be
implemented. §IV explains the wireless communication
protocol and the reader-side implementation. §V covers the
implant-side implementation, which is the focus of this thesis.
§VI demonstrates the integration of wireless components.
§VII theorizes future work. §VIII concludes.

A. Spinal Cord Injury

here are roughly 17, 500 new cases of Spinal Cord Injury
(SCI) in the United States each year, primarily caused by

vehicular accidents and falls (“Spinal cord injury facts and
figures at a glance,” 2020). The cervix is the top portion of the
spinal cord (containing vertebrae C1-C7) supporting the neck;
injuries in this area result in a host of complications, primarily
incomplete/ complete tetraplegia/ quadriplegia, i.e. various
levels of limited or absent movement and sensation below the
neck; the higher the injury, the more severe the effects (“Acute
spinal cord injury,” 2015). There is no known cure for SCI,
however, there are physical rehabilitation interventions which
can help patients to recover partial functions. The restoration
of upper limb function is the highest treatment priority for
improving quality of life for patients with cervical SCI
(Inanici, 2018).

B. Neuroplasticity

Donald Hebb wrote a postulate in his book, The Organization
of Behavior, which is popularly summarized as “neurons that
fire together wire together” (Hebb, 1949). This wiring, also

known as Hebbian plasticity or neuroplasticity, takes place
during the natural development of the nervous system and
during learning, but new research shows that closed-loop,
activity-dependent neural devices can strongly influence this
wiring (Moritz, 2018). For instance, an artificial connection
can be created between two sites in the motor cortex by
recording the neuronal activity in one site and electrically
stimulating the other site correspondingly; just a couple days
of this activity-dependent stimulation resulted in changes
which persisted for more than a week (Jackson, Mavoori, &
Fetz, 2006).

II. Brain-Controlled Spinal Interfaces

A. BCI to BCSI

This view of neuroplasticity explains how emerging
brain-computer interfaces (BCIs) can be used to restore motor
function (Tolley, 2019; Capogrosso et al., 2016; Carlson &
Millan, 2013; Hochberg et al., 2012; Moritz, Perlmutter, &
Fetz, 2008). BCIs are devices which - unlike a keyboard or
mouse - extract a user’s intention more directly - such as from
neural signals - in order to interact with a computer; such
technologies can enable users to, for example, control robotic
prosthetic limbs (Rao, 2019). Brain-controlled spinal
interfaces (BCSIs) could be considered as a subset of BCIs,
except the end-effector isn’t a computer’s cursor or robotic
arm, it’s - indirectly - the user’s own muscles. This indirection
is twofold: first, the BCSI stimulates the area of the spinal
cord which contains nerves associated with the targeted
muscles, not the muscle itself; second, the BCSI only helps the
user regain control over the targeted muscles more effectively,
it doesn’t simply move the muscles as the user intends. The
goal of a BCSI is to promote neuroplasticity to restore severed
pathways from SCI.

As shown in Figure 1, BCSIs entail (1) recording neural
signals from the motor cortex, (2) decoding these signals to
predict intended movement, and (3) stimulating the spinal cord
surface at the site of injury.

Fig. 1.​ The three main steps of a BCSI (Moritz, June 7, 2014).

B. Recording Neural Signals

As shown in Figure 2, there are three main methods used to
record neural activity: (1) electroencephalography (EEG) with
electrodes placed on the scalp, (2) electrocorticography
(ECoG) with electrodes implanted over the surface of the
cortex, and (3) intracortical electrodes which penetrate the
neural tissue (Tolley, 2019). These respectively are more
invasive but have a better signal-to-noise ratio. Intracortical
electrodes are traditionally used to record the spiking activity
of individual neurons, and have worked well for many BCIs;
however, local field potentials (LFPs), which represent the
sum of synaptic input into neurons, are more stable over time
and are also successful at capturing neural signals related to
movement intention (Fazli et al., 2009, as cited in Tolley,
2019). The data which our BCSI sensor transmits are LFPs.

Fig. 2.​ Cross-section of the brain representing each of the three
common neural recording methods (Leuthardt, Schalk, Roland, Rouse,
& Moran, 2009).

C. Spinal Stimulation

Somewhat analogous to recording neural signals, there are
three primary methods for stimulating the spinal cord for
restoring movement after SCI: (1) transcutaneously with
electrodes on the skin above the spinal cord, (2) epidurally
with electrodes implanted over the surface of the spinal cord,

and (3) intraspinally with electrodes penetrating the spinal
cord (Ievins & Moritz, 2017). These are respectively more
invasive but have a tighter scope of stimulation.

Regardless of method, there are many aspects of stimulation
(electric/ magnetic, frequency, amperage, placement etc…)
with some configurations more effective for targeting specific
neural pathways than others. Each method of stimulation has
been shown to enable control over upper/ lower limbs as well
as autonomic (bladder, bowel, sexual etc...) functions (Ievins
& Moritz, 2017). Epidural stimulation is effective when
applied continuously, whereas intraspinal stimulation requires
activity-dependent stimulation to be more effective; these are
shown in Figure 3.

Fig. 3.​ Intraspinal and epidural stimulation (Mondello, Kasten, Horner,
& Moritz, 2014).

D. Neural Decoding

Neurons and neuronal activity encode information: they
contain some clues regarding what is happening: sensory
input, movement intention, thoughts, etc… Figuring out the
relationship between stimuli (events) and neural responses
further helps us understand this encoding, which enables us to,
for example, decode neural activity to predict when someone
wants to move a muscle.

The process of decoding involves identifying which features
or aspects of the neural data correspond to an event. In
developing a BCSI, we performed experiments with rats. The
rats were trained on a lever-pushing task where they touched a
nose-poke sensor while pushing a lever. On each successful
push, they were rewarded with apple juice. Eventually, they
were implanted with a 16-channel intracortical array which
recorded LFPs, as seen in Figure 4 (Tolley, 2019).

Fig. 4.​ Rat lever-pushing task (Tolley, 2019).

Thus, we ended up with simultaneous recordings of the neural
activity (LFPs) and the event (lever push + nose poke). The
data I helped collect from one iteration of the experiment is
shown in Figures 5 and 6.

Fig. 5.​ Amplitude-over-time plots of each of the 16 neural sensor
channels. Adapted from code by Nicholas Tolley.

Fig. 6.​ Nose-poke (green) and lever-push (blue) over time. Adapted
from code by Nicholas Tolley.

Khorasani et al. and Tolley et al. found that the feature in
LFPs which most clearly correlated with the lever push was
the frequency band power in a certain range located between 2
and 900 Hz. To achieve this, we first manually remove any
channels which clearly contain too much noise. Then, we pass
the raw LFP signals through a common average reference
(CAR) filter to get rid of noise common to all channels,
followed by a set of band-pass/ low-pass filters and a rectifier,

ending up with the power in the desired frequency band over
time. The core part of our decoder is a canonical correlation
analysis (CCA) filter, which we train with the data. This filter
results in a set of coefficients, one for each channel. We can
then linearly combine (multiply and add) the weighted band
power from each channel to result in a signal which finally
predicts lever movement, as seen in Figure 7.

Fig. 7.​ Real level movement (blue) and roughly decoded lever
movement (red). Adapted from code by Nicholas Tolley.

After placing a threshold on predicted movement, we can
stimulate the spinal cord whenever that threshold is crossed,
i.e. when the prediction is strong enough, resulting in
activity-dependent stimulation.

Ultimately, we can consider the BCSI as artificial neurons
which promotes a new neural pathway around an injury in the
cervical spinal cord which severed a previous neural pathway:
decoding one’s intention to move, then encoding that intention
as stimulation to promote muscle movement.

III. Implementing BCSIs

Through developing the BCSI, the primary way of performing
the decoding has been via the TDT (Tucker-Davis
Technologies) system - a large, rack-mounted lab computer -
as pictured in Figure 8.

Fig. 8.​ Soshi Samejima using the TDT (photo taken by Nicholas
Tolley).

The development of this device will have to go beyond this
medium in order to be mobile. The electrodes used to record
the LFPs and the electrodes used to stimulate the spinal cord
are already small and relatively power-efficient, i.e. already
suitable for mobile use. However, this large computer
in-between which takes care of the computationally-intensive

(and thus power-hungry) decoding is not suitable for portable
use.

One method of implementing the BCSI decoding is via a
completely implanted application-specific integrated circuit
(ASIC) derived from an FPGA (field-programmable gate
array) which can perform the decoding. Such a device has
been developed by Ranganathan et al., called the Neural
Closed-Loop Implantable Platform (NeuralCLIP) shown in
Figure 9. Power supply is already a concern with
medically-implantable devices; the main downside of the
NeuralCLIP is that it must be carefully and specifically
designed to handle the computational load efficiently.

An alternative implementation which circumvents this issue is
a wireless one: an external reader utilizing backscatter
communication to transfer the data from the implanted
electrodes to a computer which can do the intensive decoding.
The hardware for such a device has been developed by
Rosenthal et al., called NeuroDisc. The tradeoffs between the
different implementation approaches are summarized in Table
10.

Fig. 9.​ [Left] NeuralCLIP and [Right] NeuroDisc (Ranganathan et al.,

2019; Rosenthal, Kampianakis, Sharma, & Reynolds, 2018).

 TDT Implanted Wireless
Computational Resources High Low High
Mobility / Duration Very Low High/ Med High
Battery-dependency High High Low
Communication Latency Very Low Low High
Tab. 10.​ Comparing different implementations of decoding in BCSI.

IV. The Wireless Protocol

A. Overview

In order to communicate the implanted system with the
external reader, a protocol is necessary to specify in what
forms information will be exchanged. On a high-level, the
protocol involves communication between only two
components: the (external) reader, and the (internal) sensor
implant. For consistency, we will refer to the following terms

from the implant’s perspective: “uplink” as information sent
from the sensor to the reader, and “downlink” as information
sent from the reader to the sensor.

Fig. 11.​ Sequence diagram of the protocol. START and READ refer to
the reader commands, while FRAME contains the transmitted neural
data. D refers to the delay from the reader performing feature
extraction and responding to the implant.

Figure 11 outlines the protocol. The sensor implant acts like a
server and the reader acts like a client: the reader sends “start/
read/cont” commands downlink to request information from
the implant, and the implant sends back the information uplink
in packets (frames). Finally, the reader sends an “end”
command to stop the communication.

B. Downlink Communication

The downlink modulation and data encoding works as follows.
The reader commands are encoded by Pulse Interval Encoding
(PIE), as represented in Figure 12.

Fig. 12.​ PIE encoding. PW refers to the duration of the Pulse Width.

The pulse width (PW) corresponds to the duration of half a bit
‘0’. A bit 0 is represented as high amplitude for one PW
followed by low for one PW. It is important to note here that a
bit 0 or 1 corresponds to exactly one 0 or 1 PIE symbol. A bit
1 is represented as high amplitude for two PWs followed by
low for one PW. Then, the data is modulated by an analog
carrier wave via Amplitude Shift Keying (ASK), as
represented in Figure 13.

Fig. 13.​ An example of ASK with on-off keying (OOK). The baseband
signal on the left, modulated by the carrier wave on the right, results in
the transmitted signal. Adapted from code written by Joshua Smith.

ASK simply oscillates the radio signal at a higher amplitude/
power for a bit 1 and at a lower amplitude for a bit 0. PIE
keeps the transmitted signal mostly high, with the goal of
maximizing the energy flow to power the implant during data
transmission. This is the main reason we selected PIE
encoding for our reader symbols: since we are using
backscatter communication, we want to maximize the energy
delivered and available at the implant.

Currently, the PW duration is 6.25μs, making the encoded
symbol 0 with duration 2PW = 12.5μs and the encoded
symbol 1 with duration 3PW = 18.75μs. Assuming an equal
number of 1s and 0s transmitted, this downlink
communication achieves a data rate of 64kbps.

There are four commands which are sent: Start, Read, Cont,
and End. The Start command consists of the bitstream ‘00’
followed by the 12-bit device ID (to select a particular implant
to communicate with). The Read command consists of the
bitstream ‘01’ followed by a 16-bit stream indicating which
of the 16 channels to transmit and an 8-bit stream indicating
the number of consecutive frames to transmit within two
reader commands (Frame Count). The Cont command is
simply the bitstream ‘10;’ this is sent after every Frame Count
number of frames to maintain synchronization. The End
command consists of ‘11’ followed by the 12-bit device ID.
These are summarized in Table 14.

Command Structure

Start [2b: 00 | 12b: device ID]
Read [2b: 01 | 16b: active channels | 8b: frame count]
Cont [2b: 10]
End [2b: 11 | 12b: device ID]

Tab. 14.​ Reader commands

Each command begins with a frame-synchronization
(frame-sync) pulse which is a 12.5μs delimiter followed by a
PIE-encoded 0 and calibration pulse, as shown in Figure 15.

Fig. 15.​ Frame-sync. PW refers to the duration of the Pulse Width.

C. Uplink Communication

The protocol supports up to 16 neural channels, with 16 bits
per channel. After recording the data with the electrodes, the
implant encodes the data using Hamming encoding, which is a
linear error-correcting code that can detect two-bit errors and
correct one-bit errors. The goal of error-correcting codes, like
Hamming, is to send redundant information in different ways,
such that the data is robust in a noisy environment. Here, we
specifically use H(11, 15) which transmits 15 total bits for
every 11 data bits.

Next, the reader applies an interleaving algorithm to the frame.
The goal of the interleaving process is to increase the
likelihood of correction/ detection of burst errors (which
become spread). In particular, we use a pattern interleaving
algorithm that requires a permutation vector with the same
length in bits as the frame. This vector will be predetermined
by the reader and implant, so that an adversary would not be
able to interpret the intercepted data.

After the hamming and interleaving blocks, the resulting
frame bits are encoded via FM0. FM0, also known as
differential manchester encoding, is a line encoding scheme
which involves a switch on every symbol period. If the bit is
0, it switches again halfway through the period, otherwise if
the bit is 1, it stays constant during the period.

Fig. 16.​ FM0 encoding (shown by the yellow signal).

As seen in Figure 16, the transitions of the digital signal
indicate a logical value (1/ 0), not the value of the digital
signal itself (high/ low). One reason to use FM0 modulation to
wirelessly transmit the data from the implant is that a
transition is guaranteed at every bit boundary, making the
synchronization between the implant and the reader easier to
achieve. FM0 is also less error-prone in noisy environments
than simply comparing the signal levels against a threshold.
Moreover, it achieves Zero DC bias, i.e. if the high/ low
analog signals are the same magnitude/ opposite polarity, the
average voltage is zero, resulting in lower transmitting power
necessary and minimal noise (Schouhamer Immink &
Pátrovics, 1997).

Finally, the FM0-encoded frame is transmitted using ASK or
Phase-Shift Keying (PSK) as Binary-PSK (BPSK) or
Differential Quadrature PSK (DQPSK). Quadrature amplitude
modulation utilizes complex values to send two orthogonal
carrier waves, such that two bits can be sent per symbol,
yielding a higher data rate. DQPSK is the method used for
backscatter modulation in the NeuroDisc, but our current
implementation only uses ASK.

D. Backscatter Communication

One approach for the implant to send data to the reader would
be to actively generate and amplify its own carrier frequency.
However, this consumes a significant amount of power.
Another way for the implant to send data to the reader is for
the reader to broadcast a carrier wave, which the implant can
passively encode data on by switching the impedance on its
antennae, reflecting the carrier wave according to the data.
This approach was preferred and used for our system since it
consumes significantly less power (Rosenthal, Kampianakis,
Sharma, & Reynolds, 2018). The downside is that this results
in more path attenuation, i.e. power loss as a wave propagates
more distance, which could result in less reliable
communication in more noisy environments. To minimize the
impact of these possible errors, we used the hamming and
interleaving blocks.

E. OSI Model

The Open Systems Interconnection (OSI) model is a
hierarchical structure composed of layers which represents
how most modern communication infrastructures, such as the
Internet, work. This involves several layers of encapsulation -
from physical to application - to ensure robust (error-free)
communication. The OSI model applied to this protocol is
shown in Table 17.

Data Unit Layer Description

Data Application Implant: Neural signals (LFPs) recording
Reader: Neural signals decoding (via GNU
Radio)

Data Presentation Data representation: Binary 2’s complement
Data encryption: future work

Data Session N/A: The session layer specifies procedures
such as restart and termination of operation,
hence, there is no need for this layer in our
system

Segment Transport Controls the reliability of data transfer based
on a set of reader commands and implant
responses. The reader talks first, and keeps
track of the frame counter for frame
retransmission

Packet Network N/A: The network layer specifies routing with
multi-node networks, but our communication
is point-to-point

Frame Data link Implant: transmits data frames as specified
Reader: transmit commands as specified
Error correction and detection: Hamming
H(11,15) and Interleaving

Symbol Physical Wireless (backscatter) communication
Implant: 1Mbps, Reader: 64kbps
Encoding: FM0 (uplink), PIE (downlink)
Modulation: ASK/BPSK

Tab. 17.​ OSI model applied to the communication protocol.

F. Reader Implementation

Fig. 18.​ Communication block diagram for the reader, that can be
divided into two parts: received signal decoding and feature
extraction.

Figure 18 summarizes the reader-side implementation. The
reader uses a Universal Software Radio Peripheral (USRP)
software-defined radio to both transmit the Ultra-High
Frequency (UHF) waves at 915MHz carrying the reader
commands and receive the modulated backscatter signal
carrying the implant data. In particular, we use an USRP N210
with an SBX daughterboard. This information is transferred
from the USRP to a computer using Gigabit Ethernet which
runs GNU Radio. The GNU radio receiver uses a flowgraph

approach to process the received data frames and perform
feature extraction. The reader can be divided into 4 stages:

1. Signal detection: Gate, Matched Filter
2. Signal decoding: FM0 decoding
3. Error Detection/correction: De-interleaving,

Hamming decoding
4. Feature Extraction: CAR, BPF, CCA, LPF,

Peak-Finding
Then the reader sends a command back to the implant.

V. Implant Implementation

A. Hardware/ Software Utilized

For prototyping, we use the TinyFPGA BX board, which
comprises a 16MHz clock. As mentioned in Section III, we
decided to use an FPGA with the ultimate goal of developing a
completely implanted ASIC. This FPGA is programmed with
Verilog, a hardware description language (HDL). In order to
test the Verilog blocks, we used testbenches and the
GTKWave software. After simulation, we tested and verified
the hardware performance via an oscilloscope.

B. Uplink FM0 Encoding

Fig. 19.​ Block diagram for the FM0 module.

The goal of this module is to take a 126-bit packet (received
from the implanted electrodes and neural microchip) and
transmit it as FM0 symbols with the proper timing. In the
block diagram (Figure 19), each block is a Verilog module and
the dashed blocks are hardware-related elements. Every packet

corresponds to one 126-bits data frame from the sensor
implant.

The communication between the neural microchip and the
FPGA is application-dependent. For example, the NeuralClip
(Ranganathan et al., 2019) uses Serial Peripheral Interface
(SPI) to transfer the data between the implanted neural
microchip (Intan Technologies) and the FPGA.

The DFF module is a simple d-flip-flop: it takes in a clock and
input signal, and outputs that input signal synchronized to the
clock. It ensures that no timing issues could permeate over
from hardware. This is used to synchronize the reset signal
from the button (Figure 20).

Fig. 20.​ Simulation of the DFF module. When the input ‘d’ switches on
the positive edge of the clock, the output ‘q’ also switches
immediately. When the input ‘d’ switches in-between a clock cycle,
the output ‘q’ only switches on the next positive edge of the clock.

The Debouncer module takes in a clock and an input signal,
and outputs that signal in such a way that removes the bounces
caused by flipping a hardware switch. Debouncing ensures
that a switch only switches once per flip as intended instead of
multiple times in rapid succession. This ensures that when the
SEND button is flipped, the ‘send_enable’ signal only has a
single positive edge, as opposed to several from bouncing as
shown in Figure 21.

Fig. 21.​ Oscilloscope screenshot of debouncing signal. The blue (2)
signal is the raw signal from the SEND button, which oscillates several
times during a single switch flip. The purple (3) signal is the
debounced (and delayed) ‘send_enable’ signal which properly flips
once after a single switch flip.

The Div module outputs a clock ‘period’ times slower than
‘clk.’ This is used to create the symbol clock, which needs to
have a period of 6.25μs, which corresponds to a frequency of
160 KHz. We use this frequency because the implant sensor is
required to backscatter the data at 160kbps. The TinyFPGA
has a 16 MHz system clock, so we need our symbol clock to

be 100x slower than that, i.e. we set ‘period’ to 100. In the
simulation (Figure 22), we show how Div can generate a clock
that’s 4x slower and 10x slower than the input clock.

Fig. 22.​ Simulation of the Div module. When ‘period’ is set to 4,
‘out_clk’ has a period four times as long as ‘clk,’ and when ‘period’ is
set to 10, ‘out_clk’ has a period ten times as long as ‘clk.’

The Edge Detect module detects a positive or negative edge
from the input. If ‘pos’ is 1, it detects a positive edge,
otherwise it detects a negative edge. When an edge is detected,
‘out’ is raised for one clock cycle. This is used in several
modules, mainly to detect the positive (or negative) edges of
the symbol period. In the simulation (Figure 23), detecting a
posedge and negedge occurs respectively.

Fig. 23.​ Simulation of the Edge Detect module. When ‘pos’ is set to 1,
‘out’ becomes high for one clock cycle upon detecting the positive
edge from ‘in.’ When ‘pos’ is set to 0, ‘out’ becomes high for one
clock cycle upon detecting the negative edge from ‘in.’

The Counter module begins ‘count’ at zero. Once a positive
edge is detected in ‘send_enable,’ count begins incrementing
every symbol period. Once the count reaches the ‘max’ value,
it resets to 0. The ‘sending’ signal is high whenever the
module is incrementing and low when it isn’t. This counter is
used for indexing into the sensor data, sending it bit by bit. In
this case, we’re sending a 126-bit packet, so ‘max’ is set to
125. The ‘sending’ signal is used by the FM0 module to only
encode (flip back and forth) if data is being sent, and stay at a
flat zero otherwise.

The Sender module sends out each bit of a ‘data_in’ packet,
starting when a positive edge is detected in ‘send_enable,’ and
sending the next bit every symbol period. It stops sending
once the end of the packet is reached. The ‘sending’ signal is
high only when data is being sent. The sender simply uses the
counter to index through the sensor data. The 126-bit packet is

passed as ‘data_in.’ The ‘sending’ signal is passed through
from the counter.

Finally, the FM0 module encodes the ‘in’ signal as per FM0,
sending according to the symbol period and only sending
when ‘sending’ is high. This is shown in Figures 24 and 25
respectively.

Fig. 24.​ Simulation of the FM0 module. The ‘period_clk’ is twice the
period of the system ‘clk.’ The ‘out’ signal encodes the ‘in’ signal in
FM0. The ‘sending’ signal is assumed to be high for this simulation.

The Demo module is a high-level block which simply
connects the sender and FM0 modules (Figure 25).

Fig. 25.​ Simulation of the Demo module. When ‘send_enable’ is first
set to high, the packet ‘data_in’ starts being sent bit-by-bit by the
sender module through ‘data_out.’ The FM0 module encodes
‘data_out’ through ‘fm_out,’ and only does so when ‘sending’ is high.

The hardware testing setup is shown in Figures 26 and 27. The
two switches correspond to the reset and send_enable signals.
The oscilloscope’s yellow signal displays the FM0 output.

Fig. 26.​ Hardware testing setup: the circuit. The top button is RESET
and the bottom button is SEND. The oscilloscope grounding clip and
probe can be seen on the left.

Fig. 27.​ Hardware testing setup: the oscilloscope. This oscilloscope
has multiple channels, enabling us to detect when the ‘send_enable’
signal is triggered and simultaneously see the FM0_OUT signal.

For the sake of testing, the pattern that’s being transmitted is 6
bits repeating: 001101.

Fig. 28.​ FM0 as seen on the oscilloscope. The yellow (1) signal is the
transmitted signal, and the blue (2) is the ‘send_enable’ signal.

To verify the timing (Figure 28), we used the cursors to see
that the BX-AX label equals 6.3000μs and the 1/|dX| label
equals 158.7kHz, both of which approximately equal 6.25μs
and 160 kHz, our desired symbol period and frequency.

The entire packet is 126 bits, so we should expect the packet
length to be . We can see in Figure26 .25μs 87.5μs1 × 6 = 7
29 that the BX-AX label properly equals 788.0μs.

Fig. 29.​ A whole FM0-encoded 126-bit packet. The yellow (1) signal is
the transmitted signal, and the blue (2) is the ‘send_enable’ signal.

The reason why the measurements are slightly off is that the
granularity at which the cursors move is relatively large:
scrolling one unit left or right yields a measurement slightly
under or over our expected value.

C. Downlink PIE Decoding

For the sake of efficiency, instead of creating a set of Verilog
modules which time and recognize the changes in the input to
interpret PIE symbols, we created a correlator. Because the
protocol only handles a set of four (sufficiently
distinguishable) reader commands, as an initial approach, we
can simply correlate the incoming signal with the already
known reader commands.

The prototype module takes an input which is the encoded PIE
command, and outputs a correlation value with respect to the
commands. This module looked specifically for the ReadF
command, which consists of frame_sync + 0b’00 0000 0000
0000 0000 0000 1111 (Figure 30).

Fig. 30.​ Decoding the ReadF PIE command.

The module samples every 10 clock cycles for simplicity/
efficiency, which makes it such that the number of samples in
a ReadF command is 650. The correlation is currently
implemented by XOR'ing the sampled input with the
command and counting the number of set bits. In the

simulation (Figure 30), all the 650 bits match up; hence why
the correlation value here is 650.

VI. Integrated Demo

To validate the wireless data transmission, we need to
integrate wireless RF connectivity between our FPGA and the
reader. To do so, we initially integrated the TinyFPGA with
the Wireless Identification Sensing Platform (WISP) (Sample
& Smith, 2013). The goal is to control the RF front-end of the
WISP with our FPGA. Later on, we want to build an
Integrated Circuit (IC) to add the RF front end to our
TinyFPGA. James Rosenthal created the following integrated
demo, shown in Figure 31, where the WISP - a device which
performs the passive, sensor-side backscatter communication -
was connected to the TinyFPGA. A level-shifter was required
in the WISP Rx path to convert the voltage levels.

Fig. 31.​ Diagram of test setup.

To initially validate the RF front-end of our WISP-FPGA
setup, James used an RF signal generator that could perform
pulse modulation by sending bursts (Figure 32).

Fig. 32.​ Signal generator setup. It is set to 915 MHz at 20 dBm, with
pulse modulation.

Fig. 33.​ Overall test setup. The TinyFPGA is connected to a WISP and
an oscilloscope. The signal generator is connected to a base station
which can emit the backscatter carrier wave.

Fig. 34.​ Oscilloscope showing test results.

The yellow signal in the oscilloscope (Figure 34) is the (FM0-
encoded) transmitted packet coming from the FPGA. Green is
the mock reader command coming in from the base station
(signal generator).

This demo shows two things. Firstly, we successfully used the
WISP’s RF front-end to receive a digital signal of the correct
amplitude in our FPGA. Secondly, the FPGA successfully
detected a change in the received signal - emulating a read
command - and outputted an FM0-encoded data stream -
emulating the implant data frame (Figure 33).

VII. Future Work

Several things still need to be done in order to fully integrate
and test all components of this system. After the device has
been robustly tested to work with the mock data, we will
transmit pre-recorded neural data and test the decoding
performance. Once that works thoroughly, we can move
forward with live neural decoding.

One important feature which would be necessary for
implantation in humans is ensuring the privacy and security of
transmitted neural signals. Researchers at the University of
Washington have already developed a threat model for BCIs,
and have theorized a BCI Anonymzier to prevent malicious
attackers from extracting private data and interfering with BCI
operation (Bonaci, Calo, & Chizeck, 2015). We could utilize
the threat model to develop a similar defense, adding
additional encryption and decryption layers into the protocol.

VIII. Conclusion

A BCSI is an effective solution for restoring movement in
patients with cervical SCI. We can consider the BCSI as
artificial neurons which promote a new neural pathway around
an injury in the cervical spinal cord which severed a previous
neural pathway: first, decoding one’s intention to move, then
encoding that intention as stimulation to promote muscle
movement. A wireless backscatter medium is an efficient
implementation of a BCSI. We’ve developed and tested
components of the hardware implementation of this protocol
on the sensor-side: the FPGA can successfully handle both the
uplink and downlink communication with the reader.
Ultimately, there are several layers of encoding and decoding
involved in the communication protocol of the wireless BCSI,
much like the lower-level mechanisms of neurons in neural
pathways.

Works Cited

Acute spinal cord injury
. (2015). Retrieved from
https://www.hopkinsmedicine.org/health/conditions-and-disea
ses/acute-spinal-cord-injury

Arjona, L., Rosenthal, J., Smith, J., & Moritz, C. (2019). High
performance flexible protocol for backscattered-based neural
implants doi:10.1109/APWC.2019.8870386

Bonaci, T., Calo, R., & Chizeck, H. J. (2015). App stores for
the brain : Privacy and security in brain-computer interfaces.
IEEE Technology and Society Magazine, 34(2), 32-39.
doi:10.1109/MTS.2015.2425551

Capogrosso, M., Milekovic, T., Borton, D., Wagner, F.,
Moraud, E. M., Mignardot, J., . . . Courtine, G. (2016). A
brain–spine interface alleviating gait deficits after spinal cord
injury in primates. Nature, 539(7628), 284-288.
doi:10.1038/nature20118

Carlson, T., & Millan, J. d. R. (2013). Brain-controlled
wheelchairs: A robotic architecture. IEEE Robotics &
Automation Magazine, 20(1), 65-73.
doi:10.1109/MRA.2012.2229936

Fazli, S., Grozea, C., Dan oczy, M. '., Popescu, F., Blankertz,
B., & M uller, K. (2009). Subject independent EEG-based BCI
decoding. Paper presented at the Proceedings of the 22nd
International Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada. 513–521.

Hebb, D. (1949). The organization of behaviour: A
neuropsychological theory. New York: Wiley.

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y.,
Simeral, J. D., Vogel, J., . . . Donoghue, J. P. (2012). Reach
and grasp by people with tetraplegia using a neurally
controlled robotic arm. Nature, 485(7398), 372-375.
doi:10.1038/nature11076

Ievins, A., & Moritz, C. T. (2017). Therapeutic stimulation for
restoration of function after spinal cord injury. Physiology,
32(5), 391-398. doi:10.1152/physiol.00010.2017

Inanici, F., Samejima, S., Gad, P., Edgerton, V. R., Hofstetter,
C. P., & Moritz, C. T. (2018). Transcutaneous electrical spinal
stimulation promotes long-term recovery of upper extremity
function in chronic tetraplegia. IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 26(6), 1272-1278.
doi:10.1109/TNSRE.2018.2834339

Jackson, A., Mavoori, J., & Fetz, E. E. (2006). Long-term
motor cortex plasticity induced by an electronic neural
implant. Nature, 444(7115), 56-60. doi:10.1038/nature05226

Leuthardt, E. C., Schalk, G., Roland, J., Rouse, A., & Moran,
D. W. (2009). Evolution of brain-computer interfaces: Going
beyond classic motor physiology. Neurosurgical Focus FOC,
27(1), E4. doi:10.3171/2009.4.FOCUS0979

Mondello, S., Kasten, M., Horner, P., & Moritz, C. (2014).
Therapeutic intraspinal stimulation to generate activity and
promote long-term recovery. Frontiers in Neuroscience, 8, 21.
doi:10.3389/fnins.2014.00021

Moritz, C. T. (2018). Now is the critical time for engineered
neuroplasticity. Neurotherapeutics, 15(3), 628-634.
doi:10.1007/s13311-018-0637-0

Moritz, C. T., Perlmutter, S. I., & Fetz, E. E. (2008). Direct
control of paralysed muscles by cortical neurons. Nature,
456(7222), 639-642. doi:10.1038/nature07418

Ranganathan, V., Nakahara, J., Samejima, S., Tolley, N.,
Khorasani, A., Moritz, C. T., & Smith, J. R. (2019).
NeuralCLIP: A modular FPGA-based neural interface for
closed-loop operation. Paper presented at the 791-794.
doi:10.1109/NER.2019.8717135

Rao, R. P. (2019). Towards neural co-processors for the brain:
Combining decoding and encoding in brain–computer
interfaces doi:https://doi.org/10.1016/j.conb.2019.03.008

Rosenthal, J., Kampianakis, E., Sharma, A., & Reynolds, M.
S. (2018). A 6.25 mbps, 12.4 pJ/bit DQPSK backscatter
wireless uplink for the NeuroDisc brain-computer interface.
Paper presented at the 1-4.
doi:10.1109/BIOCAS.2018.8584667

Sample, A., & Smith, J. (2013). The wireless identification
and sensing platform. () doi:10.1007/978-1-4419-6166-2_3

Schouhamer Immink, K., & Pátrovics, L. (1997). Performance
assessment of DC-free multimode codes. Communications,
IEEE Transactions On, 45, 293-299. doi:10.1109/26.558690

Spinal cord injury facts and figures at a glance . (2020).
National Spinal Cord Injury Statistical Center, Retrieved from
https://www.nscisc.uab.edu/Public/Facts%20and%20Figures%
202020.pdf

