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Abstract​—​Brain-Controlled Spinal Interfaces are innovative medical devices which can aid physical rehabilitation to 
restore volitional movement in areas paralyzed by cervical Spinal Cord Injury. The device entails reading neural 
signals in the motor cortex, decoding the intention to perform a specific movement from those signals, and stimulating 
the spinal cord when movement is intended. Decoding the neural signals is computationally-intensive and therefore 
power-hungry, making portable devices difficult to implement. A wireless implementation of a Brain-Controlled 
Spinal Interface consisting of an external computer (reader) which utilizes backscatter communication to collect data 
from an implanted neural sensor (implant) can perform that intensive computation. This thesis focuses on the 
hardware, implant-side implementation of the wireless backscatter communication protocol on a low-power FPGA.  
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I. Introduction 

The paper is organized as follows. §I introduces the problem 
of spinal cord injury and the concept of neuroplasticity. §II 
explains how a brain-controlled spinal interface is an effective 
solution and how each component works. §III covers the 

various ways brain-controlled spinal interfaces can be 
implemented. §IV explains the wireless communication 
protocol and the reader-side implementation. §V covers the 
implant-side implementation, which is the focus of this thesis. 
§VI demonstrates the integration of wireless components. 
§VII theorizes future work. §VIII concludes. 

A. Spinal Cord Injury  

here are roughly 17, 500 new cases of Spinal Cord Injury 
(SCI) in the United States each year, primarily caused by 

vehicular accidents and falls (“Spinal cord injury facts and 
figures at a glance,” 2020). The cervix is the top portion of the 
spinal cord (containing vertebrae C1-C7) supporting the neck; 
injuries in this area result in a host of complications, primarily 
incomplete/ complete tetraplegia/ quadriplegia, i.e. various 
levels of limited or absent movement and sensation below the 
neck; the higher the injury, the more severe the effects (“Acute 
spinal cord injury,” 2015). There is no known cure for SCI, 
however, there are physical rehabilitation interventions which 
can help patients to recover partial functions. The restoration 
of upper limb function is the highest treatment priority for 
improving quality of life for patients with cervical SCI 
(Inanici, 2018).  

B. Neuroplasticity 

Donald Hebb wrote a postulate in his book, The Organization 
of Behavior, which is popularly summarized as “neurons that 
fire together wire together” (Hebb, 1949). This wiring, also 



 
known as Hebbian plasticity or neuroplasticity, takes place 
during the natural development of the nervous system and 
during learning, but new research shows that closed-loop, 
activity-dependent neural devices can strongly influence this 
wiring (Moritz, 2018). For instance, an artificial connection 
can be created between two sites in the motor cortex by 
recording the neuronal activity in one site and electrically 
stimulating the other site correspondingly; just a couple days 
of this activity-dependent stimulation resulted in changes 
which persisted for more than a week (Jackson, Mavoori, & 
Fetz, 2006).  

II. Brain-Controlled Spinal Interfaces 

A. BCI to BCSI 

This view of neuroplasticity explains how emerging 
brain-computer interfaces (BCIs) can be used to restore motor 
function (Tolley, 2019; Capogrosso et al., 2016; Carlson & 
Millan, 2013; Hochberg et al., 2012; Moritz, Perlmutter, & 
Fetz, 2008). BCIs are devices which - unlike a keyboard or 
mouse - extract a user’s intention more directly - such as from 
neural signals - in order to interact with a computer; such 
technologies can enable users to, for example, control robotic 
prosthetic limbs (Rao, 2019). Brain-controlled spinal 
interfaces (BCSIs) could be considered as a subset of BCIs, 
except the end-effector isn’t a computer’s cursor or robotic 
arm, it’s - indirectly - the user’s own muscles. This indirection 
is twofold: first, the BCSI stimulates the area of the spinal 
cord which contains nerves associated with the targeted 
muscles, not the muscle itself; second, the BCSI only helps the 
user regain control over the targeted muscles more effectively, 
it doesn’t simply move the muscles as the user intends. The 
goal of a BCSI is to promote neuroplasticity to restore severed 
pathways from SCI.  
 
As shown in Figure 1, BCSIs entail (1) recording neural 
signals from the motor cortex,  (2) decoding these signals to 
predict intended movement, and (3) stimulating the spinal cord 
surface at the site of injury.  

 
Fig. 1.​ The three main steps of a BCSI (Moritz, June 7, 2014).  

B. Recording Neural Signals 

As shown in Figure 2, there are three main methods used to 
record neural activity: (1) electroencephalography (EEG) with 
electrodes placed on the scalp, (2) electrocorticography 
(ECoG) with electrodes implanted over the surface of the 
cortex, and (3) intracortical electrodes which penetrate the 
neural tissue (Tolley, 2019). These respectively are more 
invasive but have a better signal-to-noise ratio. Intracortical 
electrodes are traditionally used to record the spiking activity 
of individual neurons, and have worked well for many BCIs; 
however, local field potentials (LFPs), which represent the 
sum of synaptic input into neurons, are more stable over time 
and are also successful at capturing neural signals related to 
movement intention (Fazli et al., 2009, as cited in Tolley, 
2019). The data which our BCSI sensor transmits are LFPs.  

 
Fig. 2.​ Cross-section of the brain representing each of the three 
common neural recording methods (Leuthardt, Schalk, Roland, Rouse, 
& Moran, 2009).   

 

C. Spinal Stimulation 

Somewhat analogous to recording neural signals, there are 
three primary methods for stimulating the spinal cord for 
restoring movement after SCI: (1) transcutaneously with 
electrodes on the skin above the spinal cord, (2) epidurally 
with electrodes implanted over the surface of the spinal cord, 



 
and (3) intraspinally with electrodes penetrating the spinal 
cord (Ievins & Moritz, 2017). These are respectively more 
invasive but have a tighter scope of stimulation.  
 
Regardless of method, there are many aspects of stimulation 
(electric/ magnetic, frequency, amperage, placement etc…) 
with some configurations more effective for targeting specific 
neural pathways than others. Each method of stimulation has 
been shown to enable control over upper/ lower limbs as well 
as autonomic (bladder, bowel, sexual etc...) functions (Ievins 
& Moritz, 2017). Epidural stimulation is effective when 
applied continuously, whereas intraspinal stimulation requires 
activity-dependent stimulation to be more effective; these are 
shown in Figure 3. 

   
Fig. 3.​ Intraspinal and epidural stimulation (Mondello, Kasten, Horner, 
& Moritz, 2014).  

D. Neural Decoding 

Neurons and  neuronal activity encode information: they 
contain some clues regarding what is  happening: sensory 
input, movement intention, thoughts, etc… Figuring out the 
relationship between stimuli (events) and neural responses 
further helps us understand this encoding, which enables us to, 
for example, decode neural activity to predict when someone 
wants to move a muscle.  
 
The process of decoding involves identifying which features 
or aspects of the neural data correspond to an event. In 
developing a BCSI, we performed experiments with rats. The 
rats were trained on a lever-pushing task where they touched a 
nose-poke sensor while pushing a lever. On each successful 
push, they were rewarded with apple juice. Eventually, they 
were implanted with a 16-channel intracortical array which 
recorded LFPs, as seen in Figure 4 (Tolley, 2019). 

 
Fig. 4.​ Rat lever-pushing task (Tolley, 2019). 

Thus, we ended up with simultaneous recordings of the neural 
activity (LFPs) and the event (lever push + nose poke). The 
data I helped collect from one iteration of the experiment is 
shown in Figures 5 and 6.  

 
Fig. 5.​ Amplitude-over-time plots of each of the 16 neural sensor 
channels. Adapted from code by Nicholas Tolley.  
 

 
Fig. 6.​ Nose-poke (green) and lever-push (blue) over time. Adapted 
from code by Nicholas Tolley.  

Khorasani et al. and Tolley et al. found that the feature in 
LFPs which most clearly correlated with the lever push was 
the frequency band power in a certain range located between 2 
and 900 Hz. To achieve this, we first manually remove any 
channels which clearly contain too much noise. Then, we pass 
the raw LFP signals through a common average reference 
(CAR) filter to get rid of noise common to all channels, 
followed by a set of band-pass/ low-pass filters and a rectifier, 



 
ending up with the power in the desired frequency band over 
time.  The core part of our decoder is a canonical correlation 
analysis (CCA) filter, which we train with the data. This filter 
results in a set of coefficients, one for each channel. We can 
then linearly combine (multiply and add) the weighted band 
power from each channel to result in a signal which finally 
predicts lever movement, as seen in Figure 7.  

 
Fig. 7.​ Real level movement (blue) and roughly decoded lever 
movement (red). Adapted from code by Nicholas Tolley.  

 
After placing a threshold on predicted movement, we can 
stimulate the spinal cord whenever that threshold is crossed, 
i.e. when the prediction is strong enough, resulting in 
activity-dependent stimulation.  
 
Ultimately, we can consider the BCSI as artificial neurons 
which promotes a new neural pathway around an injury in the 
cervical spinal cord which severed a previous neural pathway: 
decoding one’s intention to move, then encoding that intention  
as stimulation to promote muscle movement.  

III. Implementing BCSIs 

Through developing the BCSI, the primary way of performing 
the decoding has been via the TDT (Tucker-Davis 
Technologies) system - a large, rack-mounted lab computer - 
as pictured in Figure 8.  

 
Fig. 8.​ Soshi Samejima using the TDT (photo taken by Nicholas 
Tolley). 

The development of this device will have to go beyond this 
medium in order to be mobile. The electrodes used to record 
the LFPs and the electrodes used to stimulate the spinal cord 
are already small and relatively power-efficient, i.e. already 
suitable for mobile use. However, this large computer 
in-between which takes care of the computationally-intensive 

(and thus power-hungry) decoding is not suitable for portable 
use.  
 
One method of implementing the BCSI decoding is via a 
completely implanted application-specific integrated circuit 
(ASIC) derived from an FPGA (field-programmable gate 
array) which can perform the decoding. Such a device has 
been developed by Ranganathan et al., called the Neural 
Closed-Loop Implantable Platform (NeuralCLIP) shown in 
Figure 9. Power supply is already a concern with 
medically-implantable devices; the main downside of the 
NeuralCLIP is that it must be carefully and specifically 
designed to handle the computational load efficiently.  
 
An alternative implementation which circumvents this issue is 
a wireless one: an external reader utilizing backscatter 
communication to transfer the data from the implanted 
electrodes to a computer which can do the intensive decoding. 
The hardware for such a device has been developed by 
Rosenthal et al., called NeuroDisc. The tradeoffs between the 
different implementation approaches are summarized in Table 
10. 

 
Fig. 9.​ [Left] NeuralCLIP and [Right] NeuroDisc (Ranganathan et al., 

2019; Rosenthal, Kampianakis, Sharma, & Reynolds, 2018). 
 
  TDT  Implanted  Wireless 
Computational Resources High  Low  High 
Mobility / Duration  Very Low  High/ Med  High 
Battery-dependency  High  High  Low 
Communication Latency  Very Low  Low  High 
Tab. 10.​ Comparing different implementations of decoding in BCSI.  

IV. The Wireless Protocol 

A. Overview 

In order to communicate the implanted system with the 
external reader, a protocol is necessary to specify in what 
forms information will be exchanged. On a high-level, the 
protocol involves communication between only two 
components: the (external) reader, and the (internal) sensor 
implant. For consistency, we will refer to the following terms 



 
from the implant’s perspective:  “uplink” as information sent 
from the sensor to the reader, and “downlink” as information 
sent from the reader to the sensor.  

 
Fig. 11.​ Sequence diagram of the protocol. START and READ refer to 
the reader commands, while FRAME contains the transmitted neural 
data. D refers to the delay from the reader performing feature 
extraction and responding to the implant. 
 

Figure 11 outlines the protocol. The sensor implant acts like a 
server and the reader acts like a client: the reader sends “start/ 
read/cont” commands downlink to request information from 
the implant, and the implant sends back the information uplink 
in packets (frames). Finally, the reader sends an “end” 
command to stop the communication. 

B. Downlink Communication 

The downlink modulation and data encoding works as follows. 
The reader commands are encoded by Pulse Interval Encoding 
(PIE), as represented in Figure 12.  

 
Fig. 12.​ PIE encoding. PW refers to the duration of the Pulse Width. 

The pulse width (PW) corresponds to the duration of half a bit 
‘0’. A bit 0 is represented as high amplitude for one PW 
followed by low for one PW. It is important to note here that a 
bit 0 or 1 corresponds to exactly one 0 or 1 PIE symbol. A bit 
1 is represented as high amplitude for two PWs followed by 
low for one PW. Then, the data is modulated by an analog 
carrier wave via Amplitude Shift Keying (ASK), as 
represented in Figure 13. 

 
Fig. 13.​ An example of ASK with on-off keying (OOK). The baseband 
signal on the left, modulated by the carrier wave on the right, results in 
the transmitted signal. Adapted from code written by Joshua Smith.  
 

ASK simply oscillates the radio signal at a higher amplitude/ 
power for a bit 1 and at a lower amplitude for a bit 0. PIE 
keeps the transmitted signal mostly high, with the goal of 
maximizing the energy flow to power the implant during data 
transmission. This is the main reason we selected PIE 
encoding for our reader symbols: since we are using 
backscatter communication, we want to maximize the energy 
delivered and available at the implant. 
 
Currently, the PW duration is 6.25μs, making the encoded 
symbol 0 with duration 2PW = 12.5μs and the encoded 
symbol 1 with duration 3PW = 18.75μs. Assuming an equal 
number of 1s and 0s transmitted, this downlink 
communication achieves a data rate of 64kbps.  
 
There are four commands which are sent: Start, Read, Cont, 
and End. The Start command consists of the bitstream ‘00’ 
followed by the 12-bit device ID (to select a particular implant 
to communicate with). The Read command consists of the 
bitstream ‘01’ followed by a 16-bit stream  indicating which 
of the 16 channels to transmit and an 8-bit stream indicating 
the number of consecutive frames to transmit within two 
reader commands (Frame Count). The Cont command is 
simply the bitstream ‘10;’ this is sent after every Frame Count 
number of frames to  maintain synchronization. The End 
command consists of ‘11’ followed by the 12-bit device ID. 
These are summarized in Table 14. 



 
Command  Structure 

Start   [2b: 00 | 12b: device ID] 
Read   [2b: 01 | 16b: active channels | 8b: frame count] 
Cont   [2b: 10]  
End   [2b: 11 | 12b: device ID] 

Tab. 14.​ Reader commands 

 
Each command begins with a frame-synchronization 
(frame-sync) pulse which is a 12.5μs delimiter followed by a 
PIE-encoded 0 and calibration pulse, as shown in Figure 15. 

 
Fig. 15.​ Frame-sync. PW refers to the duration of the Pulse Width. 

C. Uplink Communication 

The protocol supports up to 16 neural channels, with 16 bits 
per channel. After recording the data with the electrodes, the 
implant encodes the data using Hamming encoding, which is a 
linear error-correcting code that can detect two-bit errors and 
correct one-bit errors. The goal of error-correcting codes, like 
Hamming, is to send redundant information in different ways, 
such that the data is robust in a noisy environment. Here, we 
specifically use H(11, 15) which transmits 15 total bits for 
every 11 data bits.  
 
Next, the reader applies an interleaving algorithm to the frame. 
The goal of the interleaving process is to increase the 
likelihood of correction/ detection of burst errors (which 
become spread). In particular, we use a pattern interleaving 
algorithm that requires a permutation vector with the same 
length in bits as the frame. This vector will be predetermined 
by the reader and implant, so that an adversary would not be 
able to interpret the intercepted data.  
 
After the hamming and interleaving blocks, the resulting 
frame bits are encoded via FM0. FM0, also known as 
differential manchester encoding, is a line encoding scheme 
which involves a switch on every symbol period. If the bit is 
0, it switches again halfway through the period, otherwise if 
the bit is 1, it stays constant during the period.  

 
Fig. 16.​ FM0 encoding (shown by the yellow signal).  

 

As seen in Figure 16, the transitions of the digital signal 
indicate a logical value (1/ 0), not the value of the digital 
signal itself (high/ low). One reason to use FM0 modulation to 
wirelessly transmit the data from the implant is that a 
transition is guaranteed at every bit boundary, making the 
synchronization between the implant and the reader easier to 
achieve. FM0 is also less error-prone in noisy environments 
than simply comparing the signal levels against a threshold. 
Moreover, it achieves Zero DC bias, i.e. if the high/ low 
analog signals are the same magnitude/ opposite polarity, the 
average voltage is zero, resulting in lower transmitting power 
necessary and minimal noise (Schouhamer Immink & 
Pátrovics, 1997).  
 
Finally, the FM0-encoded frame is transmitted using ASK or 
Phase-Shift Keying (PSK) as Binary-PSK (BPSK) or 
Differential Quadrature PSK (DQPSK). Quadrature amplitude 
modulation utilizes complex values to send two orthogonal 
carrier waves, such that two bits can be sent per symbol, 
yielding a higher data rate. DQPSK is the method used for 
backscatter modulation in the NeuroDisc, but our current 
implementation only uses ASK.  

D. Backscatter Communication 

One approach for the implant to send data to the reader would 
be to actively generate and amplify its own carrier frequency. 
However, this consumes a significant amount of power. 
Another way for the implant to send data to the reader is for 
the reader to broadcast a carrier wave, which the implant can 
passively encode data on by switching the impedance on its 
antennae, reflecting the carrier wave according to the data. 
This approach was preferred and used for our system since it 
consumes significantly less power (Rosenthal, Kampianakis, 
Sharma, & Reynolds, 2018). The downside is that this results 
in more path attenuation, i.e. power loss as a wave propagates 
more distance, which could result in less reliable 
communication in more noisy environments. To minimize the 
impact of these possible errors, we used the hamming and 
interleaving blocks. 

E. OSI Model 

The Open Systems Interconnection (OSI) model is a 
hierarchical structure composed of layers which represents 
how most modern communication infrastructures, such as the 
Internet, work. This involves several layers of encapsulation - 
from physical to application - to ensure robust (error-free) 
communication. The OSI model applied to this protocol is 
shown in Table 17.  



 
Data Unit  Layer  Description 

Data  Application  Implant: Neural signals (LFPs) recording  
Reader: Neural signals decoding (via GNU 
Radio) 

Data  Presentation  Data representation: Binary 2’s complement 
Data encryption: future work 

Data  Session  N/A: The session layer specifies procedures 
such as restart and termination of operation, 
hence, there is no need for this layer in our 
system 

Segment  Transport  Controls the reliability of data transfer based 
on a set of reader commands and implant 
responses. The reader talks first, and keeps 
track of the frame counter for frame 
retransmission 

Packet  Network  N/A: The network layer specifies routing with 
multi-node networks, but our communication 
is point-to-point 

Frame  Data link  Implant: transmits data frames as specified 
Reader: transmit commands as specified 
Error correction and detection: Hamming 
H(11,15) and Interleaving 

Symbol  Physical  Wireless (backscatter) communication 
Implant: 1Mbps, Reader:  64kbps 
Encoding: FM0 (uplink), PIE (downlink) 
Modulation: ASK/BPSK 

Tab. 17.​ OSI model applied to the communication protocol. 

F. Reader Implementation 

 
Fig. 18.​ Communication block diagram for the reader, that can be 
divided into two parts: received signal decoding and feature 
extraction. 

 
Figure 18 summarizes the reader-side implementation. The 
reader uses a Universal Software Radio Peripheral (USRP) 
software-defined radio to both transmit the Ultra-High 
Frequency (UHF) waves at 915MHz carrying the reader 
commands and receive the modulated backscatter signal 
carrying the implant data. In particular, we use an USRP N210 
with an SBX daughterboard. This information is transferred 
from the USRP to a computer using Gigabit Ethernet which 
runs GNU Radio. The GNU radio receiver uses a flowgraph 

approach to process the received data frames and perform 
feature extraction. The reader can be divided into 4 stages: 

1. Signal detection: Gate, Matched Filter 
2. Signal decoding: FM0 decoding 
3. Error Detection/correction: De-interleaving, 

Hamming decoding 
4. Feature Extraction: CAR, BPF, CCA, LPF, 

Peak-Finding 
Then the reader sends a command back to the implant. 

V. Implant Implementation 

A. Hardware/ Software Utilized 

For prototyping, we use the TinyFPGA BX board, which 
comprises a 16MHz clock. As mentioned in Section III, we 
decided to use an FPGA with the ultimate goal of developing a 
completely implanted ASIC. This FPGA is programmed with 
Verilog, a hardware description language (HDL). In order to 
test the Verilog blocks, we used testbenches and the 
GTKWave software. After simulation, we tested and verified 
the hardware performance via an oscilloscope.  

B. Uplink FM0 Encoding 

 
Fig. 19.​ Block diagram for the FM0 module. 
 
The goal of this module is to take a 126-bit packet (received 
from the implanted electrodes and neural microchip) and 
transmit it as FM0 symbols with the proper timing. In the 
block diagram (Figure 19), each block is a Verilog module and 
the dashed blocks are hardware-related elements. Every packet 



 
corresponds to one 126-bits data frame from the sensor 
implant.  
 
The communication between the neural microchip and the 
FPGA is application-dependent. For example, the NeuralClip 
(Ranganathan et al., 2019) uses Serial Peripheral Interface 
(SPI) to transfer the data between the implanted neural 
microchip (Intan Technologies) and the FPGA. 
 
The DFF module is a simple d-flip-flop: it takes in a clock and 
input signal, and outputs that input signal synchronized to the 
clock. It ensures that no timing issues could permeate over 
from hardware. This is used to synchronize the reset signal  
from the button (Figure 20).  

 
Fig. 20.​ Simulation of the DFF module. When the input ‘d’ switches on 
the positive edge of the clock, the output ‘q’ also switches 
immediately. When the input ‘d’ switches in-between a clock cycle, 
the output ‘q’ only switches on the next positive edge of the clock.  
 

The Debouncer module takes in a clock and an input signal, 
and outputs that signal in such a way that removes the bounces 
caused by flipping a hardware switch. Debouncing ensures 
that a switch only switches once per flip as intended instead of 
multiple times in rapid succession. This ensures that when the 
SEND button is flipped, the ‘send_enable’ signal only has a 
single positive edge, as opposed to several from bouncing as 
shown in Figure 21.  

 
Fig. 21.​ Oscilloscope screenshot of debouncing signal. The blue (2) 
signal is the raw signal from the SEND button, which oscillates several 
times during a single switch flip. The purple (3) signal is the 
debounced (and delayed) ‘send_enable’ signal which properly flips 
once after a single switch flip. 
 
The Div module outputs a clock ‘period’ times slower than 
‘clk.’ This is used to create the symbol clock, which needs to 
have a period of 6.25μs, which corresponds to a frequency of 
160 KHz. We use this frequency because the implant sensor is 
required to backscatter the data at 160kbps. The TinyFPGA 
has a 16 MHz system clock, so we need our symbol clock to 

be 100x slower than that, i.e. we set ‘period’ to 100. In the 
simulation (Figure 22), we show how Div can generate a clock 
that’s 4x slower and 10x slower than the input clock.  

 
Fig. 22.​ Simulation of the Div module. When ‘period’ is set to 4, 
‘out_clk’ has a period four times as long as ‘clk,’ and when ‘period’ is 
set to 10, ‘out_clk’ has a period ten times as long as ‘clk.’ 
 

The Edge Detect module detects a positive or negative edge 
from the input. If ‘pos’ is 1, it detects a positive edge, 
otherwise it detects a negative edge. When an edge is detected, 
‘out’ is raised for one clock cycle. This is used in several 
modules, mainly to detect the positive (or negative) edges of 
the symbol period. In the simulation (Figure 23), detecting a 
posedge and negedge occurs respectively.  

 
Fig. 23.​ Simulation of the Edge Detect module. When ‘pos’ is set to 1, 
‘out’ becomes high for one clock cycle upon detecting the positive 
edge from ‘in.’ When ‘pos’ is set to 0, ‘out’ becomes high for one 
clock cycle upon detecting the negative edge from ‘in.’ 

 
The Counter module begins ‘count’ at zero. Once a positive 
edge is detected in ‘send_enable,’ count begins incrementing 
every symbol period. Once the count reaches the ‘max’ value, 
it resets to 0. The ‘sending’ signal is high whenever the 
module is incrementing and low when it isn’t. This counter is 
used for indexing into the sensor data, sending it bit by bit. In 
this case, we’re sending a 126-bit packet, so ‘max’ is set to 
125. The ‘sending’ signal is used by the FM0 module to only 
encode (flip back and forth) if data is being sent, and stay at a 
flat zero otherwise.  
 
The Sender module sends out each bit of a ‘data_in’ packet, 
starting when a positive edge is detected in ‘send_enable,’ and 
sending the next bit every symbol period. It stops sending 
once the end of the packet is reached. The ‘sending’ signal is 
high only when data is being sent. The sender simply uses the 
counter to index through the sensor data. The 126-bit packet is 



 
passed as ‘data_in.’ The ‘sending’ signal is passed through 
from the counter.  
 
Finally, the FM0 module encodes the ‘in’ signal as per FM0, 
sending according to the symbol period and only sending 
when ‘sending’ is high. This is shown in Figures 24 and 25 
respectively. 

 
Fig. 24.​ Simulation of the FM0 module. The ‘period_clk’ is twice the 
period of the system ‘clk.’ The ‘out’ signal encodes the ‘in’ signal in 
FM0. The ‘sending’ signal is assumed to be high for this simulation. 
 

The Demo module is a high-level block which simply 
connects the sender and FM0 modules (Figure 25). 
  

 
Fig. 25.​ Simulation of the Demo module. When ‘send_enable’ is first 
set to high, the packet ‘data_in’ starts being sent bit-by-bit by the 
sender module through ‘data_out.’ The FM0 module encodes 
‘data_out’ through ‘fm_out,’ and only does so when ‘sending’ is high. 
 
The hardware testing setup is shown in Figures 26 and 27. The 
two switches correspond to the reset and send_enable signals. 
The oscilloscope’s yellow signal displays the FM0 output. 

 
Fig. 26.​ Hardware testing setup: the circuit. The top button is RESET 
and the bottom button is SEND. The oscilloscope grounding clip and 
probe can be seen on the left.  

 
Fig. 27.​ Hardware testing setup: the oscilloscope. This oscilloscope 
has multiple channels, enabling us to detect when the ‘send_enable’ 
signal is triggered and simultaneously see the FM0_OUT signal. 
 

For the sake of testing, the pattern that’s being transmitted is 6 
bits repeating: 001101.  
 

 
Fig. 28.​ FM0 as seen on the oscilloscope. The yellow (1) signal is the 
transmitted signal, and the blue (2) is the ‘send_enable’ signal.  
 
To verify the timing (Figure 28), we used the cursors to see 
that the BX-AX label equals 6.3000μs and the 1/|dX| label 
equals 158.7kHz, both of which approximately equal 6.25μs 
and 160 kHz, our desired symbol period and frequency.  
 
The entire packet is 126 bits, so we should expect the packet 
length to be . We can see in Figure26 .25μs 87.5μs1 × 6 = 7  
29 that the BX-AX label properly equals 788.0μs.  



 

 
Fig. 29.​ A whole FM0-encoded 126-bit packet. The yellow (1) signal is 
the transmitted signal, and the blue (2) is the ‘send_enable’ signal.   
 
The reason why the measurements are slightly off is that the 
granularity at which the cursors move is relatively large: 
scrolling one unit left or right yields a measurement slightly 
under or over our expected value.  

C. Downlink PIE Decoding 

For the sake of efficiency, instead of creating a set of Verilog 
modules which time and recognize the changes in the input to 
interpret PIE symbols, we created a correlator. Because the 
protocol only handles a set of four (sufficiently 
distinguishable) reader commands, as an initial approach, we 
can simply correlate the incoming signal with the already 
known reader commands. 
 
The prototype module takes an input which is the encoded PIE 
command, and outputs a correlation value with respect to the 
commands. This module looked specifically for the ReadF 
command, which consists of  frame_sync + 0b’00 0000 0000 
0000 0000 0000 1111 (Figure 30).  

 
Fig. 30.​ Decoding the ReadF PIE command. 
 

The module samples every 10 clock cycles for simplicity/ 
efficiency, which makes it such that the number of samples in 
a ReadF command is 650. The correlation is currently 
implemented by XOR'ing the sampled input with the 
command and counting the number of set bits. In the 

simulation (Figure 30), all the 650 bits match up; hence why 
the correlation value here is 650. 

VI. Integrated Demo 

To validate the wireless data transmission, we need to 
integrate wireless RF connectivity between our FPGA and the 
reader. To do so, we initially integrated the TinyFPGA with 
the Wireless Identification Sensing Platform (WISP) (Sample 
& Smith, 2013). The goal is to control the RF front-end of the 
WISP with our FPGA. Later on, we want to build an 
Integrated Circuit (IC) to add the RF front end to our 
TinyFPGA. James Rosenthal created the following integrated 
demo, shown in Figure 31, where the WISP - a device which 
performs the passive, sensor-side backscatter communication - 
was connected to the TinyFPGA. A level-shifter was required 
in the WISP Rx path to convert the voltage levels. 

 
Fig. 31.​ Diagram of test setup. 

To initially validate the RF front-end of our WISP-FPGA 
setup, James used an RF signal generator that could perform 
pulse modulation by sending bursts (Figure 32). 

 
Fig. 32.​ Signal generator setup. It is set to 915 MHz at 20 dBm, with 
pulse modulation.   



 

 
Fig. 33.​ Overall test setup. The TinyFPGA is connected to a WISP and 
an oscilloscope. The signal generator is connected to a base station 
which can emit the backscatter carrier wave.   

 
Fig. 34.​ Oscilloscope showing test results.  
 

The yellow signal in the oscilloscope (Figure 34) is the (FM0- 
encoded) transmitted packet coming from the FPGA. Green is 
the mock reader command coming in from the base station 
(signal generator).  
 
This demo shows two things. Firstly, we successfully used the 
WISP’s RF front-end to receive a digital signal of the correct 
amplitude in our FPGA. Secondly, the FPGA successfully 
detected a change in the received signal - emulating a read 
command - and outputted an FM0-encoded data stream - 
emulating the implant data frame (Figure 33). 

VII. Future Work 

Several things still need to be done in order to fully integrate 
and test all components of this system. After the device has 
been robustly tested to work with the mock data, we will 
transmit pre-recorded neural data and test the decoding 
performance. Once that works thoroughly, we can move 
forward with live neural decoding.  
 

One important feature which would be necessary for 
implantation in humans is ensuring the privacy and security of 
transmitted neural signals. Researchers at the University of 
Washington have already developed a threat model for BCIs, 
and have theorized a BCI Anonymzier to prevent malicious 
attackers from extracting private data and interfering with BCI 
operation (Bonaci, Calo, & Chizeck, 2015). We could utilize 
the threat model to develop a similar defense, adding 
additional encryption and decryption layers into the protocol.  

VIII. Conclusion 

A BCSI is an effective solution for restoring movement in 
patients with cervical SCI. We can consider the BCSI as 
artificial neurons which promote a new neural pathway around 
an injury in the cervical spinal cord which severed a previous 
neural pathway: first, decoding one’s intention to move, then 
encoding that intention as stimulation to promote muscle 
movement. A wireless backscatter medium is an efficient 
implementation of a BCSI. We’ve developed and tested 
components of the hardware implementation of this protocol 
on the sensor-side: the FPGA can successfully handle both the 
uplink and downlink communication with the reader. 
Ultimately, there are several layers of encoding and decoding 
involved in the communication protocol of the wireless BCSI, 
much like the lower-level mechanisms of neurons in neural 
pathways.  
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