
Anand Sekar

Professor Shea-Brown

AMATH 342

2/21/17

AMATH 342 HW 3

1. FILTERING OF INPUTS

WHAT MATTERS IN DRIVING THE MEMBRANE RESPONSE?

 In order to get 𝑉(𝑡𝑛𝑜𝑤) = 10𝑚𝑉 at 𝑡𝑛𝑜𝑤 = 30𝑚𝑠 with 𝑅𝐶 = 10, I tried out two

different input currents. Here is a simple one where I simply set the current at 𝑡𝑛𝑜𝑤 to 90.5 mA.

%euler method simulator

deltat=1; %timestep

Tmax=50;

tlist=linspace(0,Tmax,Tmax/deltat +1) ;

Vlist=zeros(1,length(tlist));

%initialize

V0=0;

Vlist(1)=V0;

%define input current

Iapplist=ones(1,length(tlist))+sin(tlist);

Iapplist(30) = 90.5;

%circuit parameters

R=1;

C=10;

for n=1:length(tlist)-1

 t=tlist(n);

 Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) + Iapplist(n)/C)*deltat;

end

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

set(gca,'FontSize',16)

subplot(211)

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on

xlabel('t (ms)','Fontsize',20); ylabel('V(t) (mV)','Fontsize',20);

legend('Euler Approx')

subplot(212)

plot(tlist,Iapplist,'-','LineWidth',2); hold on

xlabel('t (ms)','Fontsize',20); ylabel('I(t) (mA)','Fontsize',20);

Result:

Then, I played around with a sin curve to get a very different-looking input current, but I was

still able to get the conditions for voltage (10mv at 30ms). The code is same as the above except

the part where I define the input current:

%define input currents

 Iapplist=sin(tlist);

 for t = 10:30

 Iapplist(t) = 25 * sin(tlist(t-2))^3+8.75;

 end;

Result:

ANALYSIS
 The explicit solution for V(t) looks like this:

𝑉 = 𝑉0𝑒−𝑡/𝑅𝐶 + ∫
𝑒−𝑡/𝑅𝐶

𝐶
 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡

𝑡

0

The current in this equation is within an integral. Simply focusing on that aspect, an integral

is nothing but a sum of values. One can have different functions in which eventually sum up to a

certain value at a certain point. In more concrete terms, there can be several input currents which

can summate to producing the voltage 𝑉(𝑡𝑛𝑜𝑤) = 10𝑚𝑉 at 𝑡𝑛𝑜𝑤 = 30𝑚𝑠, as proved above

with the graphs. With the first graph, the function simply produces a large instantaneous current

(90.5 mA) at tnow. With the second graph, the function is somewhat sinusoidal in nature,

producing currents with local maximums at around 30 mA; through integration, i.e. some form

of summation, this can result in getting 10mv at 30ms.

2. SUMMATION OF SIMULTANEOUS IMPULSES

DO IMPULSES SUMMATE LINEARLY, SUBLINEARLY, OR SUPERLINEARLY?

CURRENT INPUT
With RC = 10ms, I tested different currents (incrementing by 1) until I reached the spike

generation threshold (10mv), with the initial voltage at zero. Having N simultaneous impulses is

as simple as multiplying an input current by an integer value. I incremented this multiplier N

until I reached the threshold value. Taking the fraction of the way to the threshold (dividing the

maximum voltage by ten) is analogous to percentage. I kept a list of this fraction, called f, and

kept the list of corresponding N values. Here is the code:

%euler method simulator

clear all;

deltat=1 ; %timestep

Tmax=50;

tlist=linspace(0,Tmax,Tmax/deltat +1) ;

maxVlist(1) = 1;

N = 1;

nlist = [];

flist = [];

while maxVlist(N) < 10

 Vlist=zeros(1,length(tlist));

 %initialize

 V0=0;

 Vlist(1)=V0;

 %define input currents

 %Iapplist=ones(1,length(tlist));

 Iapplist=zeros(length(tlist));

 Iapplist(24) = 1 * N;

 Iapplist(25) = 1 * N;

 %Iapplist=ones(1,length(tlist))+sin(tlist);

 %circuit parameters

 R=10;

 C=1;

 for n=1:length(tlist)-1

 t=tlist(n);

 Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) +

Iapplist(n)/C)*deltat;

 end

 maxVlist = [maxVlist max(Vlist)];

 fraction = max(Vlist)/ 10;

 flist = [flist fraction];

 nlist = [nlist N];

 N = N + 1;

end

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

set(gca,'FontSize',16)

subplot(211)

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on

xlabel('t','Fontsize',20); ylabel('V(t)','Fontsize',20);

legend('Euler Approx')

subplot(212)

plot(tlist,Iapplist,'-','LineWidth',2); hold on

xlabel('t','Fontsize',20); ylabel('Iapp(t)','Fontsize',20);

% plotting f and n

figure

plot(nlist, flist);

xlabel('N');

ylabel('F');

When the code above is finished running, it gives me the graph of the final voltage and current

which is just when the threshold is passed. This occurs at N = 7:

By plotting F against N, I’m able to see this relation:

By definition, F should equal 1 when the maximum voltage is the threshold. Here, it’s obvious

that F correlates linearly with N. This conclusion can be confirmed mathematically by

manipulating the explicit integral solution for V(t):

Since we define 𝑉0 = 0, the equation becomes simply:

𝑉 = ∫
𝑒−𝑡/𝑅𝐶

𝐶
 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡

𝑡

0

We define f as:

𝑓 =
max (𝑉(𝑡))

10
=

∫
𝑒−𝑡/𝑅𝐶

𝐶 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10

N is simply a coefficient of the applied current, so we can put that into the equation, and for 𝑓 ≥

1, we can define 𝑓𝑛 as:

𝑓𝑛 =
max (𝑉(𝑡))

10
=

∫
𝑒−𝑡/𝑅𝐶

𝐶 × 𝑁 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10

Then, all we do is pull the N out of the integral:

𝑓𝑛 =
max (𝑉(𝑡))

10
= 𝑁 ×

∫
𝑒−𝑡/𝑅𝐶

𝐶 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10

Finally we can substitute f back in on the right side to get

𝑓𝑛 =
max (𝑉(𝑡))

10
= 𝑁 × 𝑓

This confirms the linear nature of summing current impulses.

CONDUCTANCE INPUT
To see how conductance input - with N again representing compounded inputs and F

representing fraction to threshold – summates, I began by looking at the graph produced by the

euler_illustrateRC_two_inputs_conductance.m code.

If the conductance were to summate linearly, then V3 – which is the voltage when the input is

(G1 + G2), should equal V1 + V2. However, this is not the case. So to find out what the

relationship between F and N is, I produced this code (which doesn’t stop when the threshold is

reached).

%euler method simulator

deltat=0.2 ; %timestep

Tmax=50;

tlist=linspace(0,Tmax,Tmax/deltat +1) ;

Vlist=zeros(1,length(tlist));

maxVlist(1) = 1;

N = 1;

nlist = [];

flist = [];

while N < 50

 %initialize

 V0=0;

 Vlist(1)=V0;

 %define input conductance

 gapplist=zeros(length(tlist));

 gapplist (25:30) = 1 * N;

 %circuit parameters

 R=10;

 C=1;

 E=11;

 for n=1:length(tlist)-1

 t=tlist(n);

 Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) + gapplist(n)*(E-

Vlist(n)))*deltat;

 end

 maxVlist = [maxVlist max(Vlist)];

 fraction = max(Vlist)/ 10;

 flist = [flist fraction];

 nlist = [nlist N];

 N = N + 1;

end

newmaxv = max(Vlist);

figure

set(gca,'FontSize',16)

subplot(211)

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);

%legend('Euler Approx')

subplot(212)

plot(tlist,gapplist,'-','LineWidth',2); hold on

xlabel('t','Fontsize',20); ylabel('gapp(t)','Fontsize',20);

%test linearity

Vlist1=zeros(1,length(tlist));

Vlist2=zeros(1,length(tlist));

Vlist=zeros(1,length(tlist));

%initialize

V0=0;

Vlist1(1)=V0;

Vlist2(1)=V0;

Vlist(1)=V0;

%define input conductance

gapplist1=ones(1,length(tlist));

gapplist2=1+sin(tlist);

gapplist=gapplist1+gapplist2;

for n=1:length(tlist)-1

 t=tlist(n);

 Vlist1(n+1)=Vlist1(n) + (-Vlist1(n)/(R*C) + gapplist1(n)*(E-

Vlist1(n)))*deltat;

 Vlist2(n+1)=Vlist2(n) + (-Vlist2(n)/(R*C) + gapplist2(n)*(E-

Vlist2(n)))*deltat;

 Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) + gapplist(n)*(E-

Vlist(n)))*deltat;

end

newmaxv = max(Vlist);

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

set(gca,'FontSize',16)

subplot(311)

plot(tlist,Vlist,'-','LineWidth',2,'MarkerSize',26); hold on

plot(tlist,Vlist1,'-','LineWidth',2,'MarkerSize',26); hold on

plot(tlist,Vlist2,'-','LineWidth',2,'MarkerSize',26); hold on

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);

%legend('Euler Approx')

set(gca,'FontSize',16)

subplot(312)

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on

plot(tlist,Vlist1+Vlist2,'.-','LineWidth',2,'MarkerSize',26); hold on

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);

%legend('Euler Approx')

subplot(313)

plot(tlist,gapplist1,'-','LineWidth',2); hold on

plot(tlist,gapplist2,'-','LineWidth',2); hold on

plot(tlist,gapplist,'-','LineWidth',2); hold on

xlabel('t','Fontsize',20); ylabel('gapp(t)','Fontsize',20);

% plotting f and n

figure

plot(nlist, flist);

xlabel('N');

ylabel('F');

 This produces the following figure:

Clearly, F and N correlate exponentially (rather than linearly with compounded simultaneous

current input). This can be proven with the explicit solution of V(t): (insert starred equation and

take out g, zero out stuff, and see how G is exponentiated).

𝑉(𝑡) = 𝑉0𝑒𝑥𝑝 ∫
1

𝜏
+ 𝑔(𝑠)𝑑𝑠

𝑡

0

+ 𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1

𝜏
+ 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

Since V(0) = 0, this becomes

𝑉(𝑡) = 𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1

𝜏
+ 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

Then, similar to how we defined N and f in the previous, current-based input, we can modify the

equation as such:

𝑓 =
𝑉(𝑡)

10
=

𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1
𝜏 +×𝑁 × 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

10

Since N is a constant, it can be pulled out of the integral:

𝑓 =
𝑉(𝑡)

10
=

𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 𝑁 ∫ (
1

𝜏𝑁 + 𝑔(𝑠)) 𝑑𝑠
𝑡

𝑡′

𝑡

0

10

The term 𝑒𝑥𝑝 is used to represent 𝑒𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔, and now that N is outside the integral, f correlates

with something along the lines of 𝑒𝑁. This shows a rather exponential, than linear, relationship

between f and N with conductance-based inputs. This makes sense, if one were to simplify the

relationship between current, conductance, and resulting voltage with Ohm’s law. Voltage can

correlate more directly with current. If this were integrated, it would make sense that once more

currents are added, it would summate linearly. Voltage also correlates directly with resistance –

but resistance is the inverse of conductance. Summing values which are inversed already hints at

a non-linear behavior. Additionally, when something of the nature
1

𝑥
 is integrated, it can result in

something of the nature ln(𝑥), which can result in something of the nature 𝑒𝑥. The last few

sentences are not meant to be a legitimate explanation of the phenomena, but rather serve as a

way to bridge intuitive understanding.

3. HH MODEL

TUNING CURVE
Code:

% Hodgkin/Huxley Equations (V_HH = -V-65), with current definition

% of membrane potential (V=Vin-Vout)

clear all;

vna=50; %set the constants

vk=-77;

vl=-54.4;

gna=120;

gk=36;

gl=.3;

c=1;

I=6.35;

v_init=-65; %the initial conditions

m_init=.052;

h_init=.596;

n_init=.317;

npoints=50000; %number of timesteps to integrate

dt=0.01; %timestep

m=zeros(npoints,1); %initialize everything to zero

n=zeros(npoints,1);

h=zeros(npoints,1);

v=zeros(npoints,1);

time=zeros(npoints,1);

m(1)=m_init; %set the initial conditions to be the first entry in the

vectors

n(1)=n_init;

h(1)=h_init;

v(1)=v_init;

time(1)=0.0;

currentList = [];

peaksList = [];

for current = 0:75

 currentList = [currentList current];

 I = current;

 numpeak = 0;

 tic

 for step=1:npoints-1,

 v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ...

 -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt;

 m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt;

 h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt;

 n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt;

 time(step+1)=time(step)+dt;

 %condition for spike detection: decreasing now, increased

 %before, over threshold

 thresh = 10;

 if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)) &

v(step)>thresh)

 numpeak = numpeak + 1;

 end

 end

 toc

 peaksList = [peaksList numpeak];

end

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

rateList = peaksList / 500;

plot(currentList, rateList);

xlabel('current');

ylabel('firing rate');

Result:

This is what the tuning curve looks like when simply incrementing the continuously-applied

currents. Now, we add a sinusoidal background current. The code is very similar to the tuning

curve above, except I define an epsilon and omega in the beginning, and add this line

immediately after the for loop which calculates voltage using steps:

 for step=1:npoints-1,

 I = current + (epsilon * sin(2 * pi * time(step) * omega));

Here are the results for various manipulations of epsilon:

I’m not sure how to analyze these different graphs, so I plotted a tuning curve. Here is the code

and resulting graph:

% constants above this code

epsilonList =[];

peaksList = [];

omega = 5;

current = 50;

for epsilon = 0:500

 epsilonList = [epsilonList epsilon];

 numpeak = 0;

 tic

 for step=1:npoints-1,

 I = current + (epsilon * sin(2 * pi * time(step) * omega));

 v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ...

 -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt;

 m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt;

 h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt;

 n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt;

 time(step+1)=time(step)+dt;

 %condition for spike detection: decreasing now, increased

 %before, over threshold

 thresh = 10;

 if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-

1)) & v(step)>thresh)

 numpeak = numpeak + 1;

 end

 end

 toc

 peaksList = [peaksList numpeak];

end

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

plot(time,v);

xlabel('t');

ylabel('V');

figure

rateList = peaksList / 500;

plot(epsilonList, rateList);

title(['FR v Epsilon w/ I bar = ' num2str(current)]);

xlabel('epsilon');

ylabel('firing rate');

Result:

It’s clear from this graph that with larger values of epsilon, the firing rate increases, and the rate

of increasing decreases with larger values of epsilon.

Here are the results for various manipulations of omega:

From 1 to 99, omega keeps increasing the firing rate (as observed by the changing scale of the y-

axis). Most importantly, the curve gets smoother and smoother – approaching the shape of the

regular tuning curve. This makes sense because the frequency, as it gets higher and to the value

of 100, with a relatively small epsilon – you pretty much get the original tuning curve.

OTHER ASPECTS OF THE NEURAL RESPONSE
There are a few aspects of the neural response beyond the firing rate that come to mind. The

resulting action potentials from the sinusoidal current input have their own aspects such as

amplitude or width/ duration. Average voltage – as part of a tuning curve over varying epsilon

and omega – is also an aspect that can be analyzed. I would expect the average voltage to

increase as epsilon increases and omega to have a periodic effect, but these are simply guesses.

This is what the tuning curve for average looks like for varying epsilon:

And this is what it looks like while varying omega:

It makes sense how average voltage would vary with omega – given that omega affects the

frequency of the sinusoidal function (it would be repetitive). It also makes sense that the average

voltage vs. epsilon graph is symmetric because the amplitude increases either way – and the

larger fluctuations cause and overall lower average voltage (because the graph seems somewhat

shifted downwards).

Another aspect can be analyzing the “beats” created by the pattern of spikes. For example, below

is a graph that shows a zoomed-in graph of voltage over current with a set omega and epsilon:

There is an enveloping sinusoidal function occurring – and the properties of this function can be

more quantifiable aspects. I wrote code to detect the frequency of this sinusoidal function, and

was going to run it to get a graph of average frequency over different values of epsilon or omega.

Here is the code:

% Hodgkin/Huxley Equations (V_HH = -V-65), with current definition

% of membrane potential (V=Vin-Vout)

clear all;

vna=50; %set the constants

vk=-77;

vl=-54.4;

gna=120;

gk=36;

gl=.3;

c=1;

I=0;

v_init=-65; %the initial conditions

m_init=.052;

h_init=.596;

n_init=.317;

npoints=50000; %number of timesteps to integrate

dt=0.01; %timestep

m=zeros(npoints,1); %initialize everything to zero

n=zeros(npoints,1);

h=zeros(npoints,1);

v=zeros(npoints,1);

time=zeros(npoints,1);

m(1)=m_init; %set the initial conditions to be the first entry in the

vectors

n(1)=n_init;

h(1)=h_init;

v(1)=v_init;

time(1)=0.0;

freqList = [];

omegaList = [];

epsilon = 8;

for omega = 31:35,

 maxList = [];

 for step=1:npoints-1,

 I = 0 + (epsilon * sin(2 * pi * time(step) * omega));

 v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ...

 -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt;

 m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt;

 h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt;

 n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt;

 time(step+1)=time(step)+dt;

 if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)))

 %local max detected

 maxList = [maxList [v(step);step]];

 end

 end

 %get index of maximums

 indexList = [];

 for n = 1:length(maxList)-1

 if ((maxList(n+1)<maxList(n)) & (maxList(n)>maxList(n-1)))

 indexList = [indexList n];

 end

 end

 timeDiffList = [];

 for n = 1:length(indexList)-1

 t1 = maxList(2, indexList(n));

 t2 = maxList(2, indexList(n+1));

 tdiff = t2 - t1;

 timeDiffList = [timeDiffList tdiff];

 end

 meanPeriod = mean(timeDiffList);

 meanFrequency = 1/meanPeriod;

 omegaList = [omegaList omega];

 freqList = [freqList meanFrequency];

 disp(meanPeriod);

end

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

plot(omegaList, freqList);

title('Beat Frequency over Omega');

ylabel('Beat Frequency');

xlabel('Omega');

I was able to get average frequency for single omega values, but unfortunately Matlab glitches

out – with its debugger – when put in this omega for loop. Professor Shea-Brown also agreed

that there was no logical explanation (as in the debugger was reporting the wrong error), so there

must be some computing error occurring. I could manually plot the points, but unfortunately I

don’t have that time, so I have decided on analyzing yet another aspect of the neural response.

However, I’m sure that if this code runs, it would yield some significant results.

Spike lag – the time to the first spike – could be another aspect of the neural response. This is the

graph (along with code) of the time to the first spike over values of epsilon.

% all the repetitive HH constants would be above this

omega = 34;

current = 6.35;

epsilonList = [];

lagList = [];

for epsilon=0:100

 spikeTimes = [];

 for step=1:npoints-1,

 I = current + (epsilon * sin(2 * pi * time(step) * omega));

 v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ...

 -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt;

 m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt;

 h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt;

 n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt;

 time(step+1)=time(step)+dt;

 %condition for spike detection: decreasing now, increased

 %before, over threshold

 thresh = 10;

 if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)) &

v(step)>thresh)

 spikeTimes = [spikeTimes (step*dt)];

 end

 end

 lagList = [lagList spikeTimes(1)];

 epsilonList = [epsilonList epsilon];

end

disp(spikeTimes(1));

set(0,'defaultaxesfontsize',20);

set(0,'defaulttextfontsize',20);

figure

plot(epsilonList,lagList);

xlabel('epsilon');

ylabel('lag');

Result:

As the graph clearly shows, as values of epsilon increases, the time lag to the first spike

decreases (i.e. getting to the first spike is faster), and eventually it doesn’t spike. This makes

sense due to how epsilon affects the amplitude of the applied current – getting a quicker voltage

spike.

