
Anand Sekar 

Professor Shea-Brown 

AMATH 342 

2/21/17 

AMATH 342 HW 3 

1. FILTERING OF INPUTS 

WHAT MATTERS IN DRIVING THE MEMBRANE RESPONSE?  

 In order to get 𝑉(𝑡𝑛𝑜𝑤) = 10𝑚𝑉  at  𝑡𝑛𝑜𝑤 = 30𝑚𝑠 with 𝑅𝐶 = 10, I tried out two 

different input currents. Here is a simple one where I simply set the current at 𝑡𝑛𝑜𝑤 to 90.5 mA.  

%euler method simulator 

deltat=1; %timestep 

Tmax=50; 

tlist=linspace(0,Tmax,Tmax/deltat +1) ; 

Vlist=zeros(1,length(tlist)); 

  

%initialize 

V0=0; 

Vlist(1)=V0; 

  

%define input current 

Iapplist=ones(1,length(tlist))+sin(tlist); 

Iapplist(30) = 90.5; 

  

%circuit parameters 

R=1; 

C=10; 

  

for n=1:length(tlist)-1 

    t=tlist(n); 

    Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) + Iapplist(n)/C )*deltat; 

end 

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure 

set(gca,'FontSize',16) 

subplot(211) 

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on 

xlabel('t (ms)','Fontsize',20); ylabel('V(t) (mV)','Fontsize',20);  

legend('Euler Approx') 



  

subplot(212) 

plot(tlist,Iapplist,'-','LineWidth',2); hold on 

xlabel('t (ms)','Fontsize',20); ylabel('I(t) (mA)','Fontsize',20);  

Result:  

 

Then, I played around with a sin curve to get a very different-looking input current, but I was 

still able to get the conditions for voltage (10mv at 30ms). The code is same as the above except 

the part where I define the input current:  

%define input currents 

 Iapplist=sin(tlist); 

 for t = 10:30 

     Iapplist(t) = 25 * sin(tlist(t-2))^3+8.75;  

 end; 

 

Result:  



 

ANALYSIS 
 The explicit solution for V(t) looks like this:  

𝑉 =  𝑉0𝑒−𝑡/𝑅𝐶 +  ∫
𝑒−𝑡/𝑅𝐶

𝐶
 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡

𝑡

0

 

The current in this equation is within an integral. Simply focusing on that aspect, an integral 

is nothing but a sum of values. One can have different functions in which eventually sum up to a 

certain value at a certain point. In more concrete terms, there can be several input currents which 

can summate to producing the voltage 𝑉(𝑡𝑛𝑜𝑤) = 10𝑚𝑉  at  𝑡𝑛𝑜𝑤 = 30𝑚𝑠, as proved above 

with the graphs. With the first graph, the function simply produces a large instantaneous current 

(90.5 mA) at tnow. With the second graph, the function is somewhat sinusoidal in nature, 

producing currents with local maximums at around 30 mA; through integration, i.e. some form 

of summation, this can result in getting 10mv at 30ms.  

2. SUMMATION OF SIMULTANEOUS IMPULSES 

DO IMPULSES SUMMATE LINEARLY, SUBLINEARLY, OR SUPERLINEARLY?  

CURRENT INPUT   
With RC = 10ms, I tested different currents (incrementing by 1) until I reached the spike 

generation threshold (10mv), with the initial voltage at zero. Having N simultaneous impulses is 

as simple as multiplying an input current by an integer value. I incremented this multiplier N 

until I reached the threshold value. Taking the fraction of the way to the threshold (dividing the 



maximum voltage by ten) is analogous to percentage. I kept a list of this fraction, called f, and 

kept the list of corresponding N values. Here is the code:  

%euler method simulator 

clear all;  

deltat=1 ; %timestep 

Tmax=50; 

tlist=linspace(0,Tmax,Tmax/deltat +1) ; 

maxVlist(1) = 1; 

N = 1; 

nlist = []; 

flist = []; 

while maxVlist(N) < 10  

     

    Vlist=zeros(1,length(tlist)); 

    %initialize 

    V0=0; 

    Vlist(1)=V0; 

  

    %define input currents 

    %Iapplist=ones(1,length(tlist)); 

    Iapplist=zeros(length(tlist)); 

    Iapplist(24) = 1 * N; 

    Iapplist(25) = 1 * N; 

    %Iapplist=ones(1,length(tlist))+sin(tlist); 

  

    %circuit parameters 

    R=10; 

    C=1; 

  

    for n=1:length(tlist)-1 

        t=tlist(n); 

        Vlist(n+1)=Vlist(n) + (-Vlist(n)/(R*C) + 

Iapplist(n)/C )*deltat; 

    end 

  

    maxVlist = [maxVlist max(Vlist)]; 

    fraction = max(Vlist)/ 10; 

    flist = [flist fraction]; 

    nlist = [nlist N]; 

    N = N + 1; 

end 

  

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure 

set(gca,'FontSize',16) 

subplot(211) 

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on 



xlabel('t','Fontsize',20); ylabel('V(t)','Fontsize',20);  

legend('Euler Approx') 

  

subplot(212) 

plot(tlist,Iapplist,'-','LineWidth',2); hold on 

xlabel('t','Fontsize',20); ylabel('Iapp(t)','Fontsize',20);  

  

% plotting f and n 

figure  

plot(nlist, flist); 

xlabel('N'); 

ylabel('F'); 

 

When the code above is finished running, it gives me the graph of the final voltage and current 

which is just when the threshold is passed. This occurs at N = 7:  

 

By plotting F against N, I’m able to see this relation:  



 

By definition, F should equal 1 when the maximum voltage is the threshold. Here, it’s obvious 

that F correlates linearly with N. This conclusion can be confirmed mathematically by 

manipulating the explicit integral solution for V(t):  

Since we define 𝑉0 = 0, the equation becomes simply:  

𝑉 =  ∫
𝑒−𝑡/𝑅𝐶

𝐶
 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡

𝑡

0

 

We define f as: 

𝑓 =  
max (𝑉(𝑡))

10
=  

∫
𝑒−𝑡/𝑅𝐶

𝐶  × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10
 

N is simply a coefficient of the applied current, so we can put that into the equation, and for 𝑓 ≥

1, we can define 𝑓𝑛 as:  

𝑓𝑛 =  
max (𝑉(𝑡))

10
=  

∫
𝑒−𝑡/𝑅𝐶

𝐶 × 𝑁 × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10
 

Then, all we do is pull the N out of the integral:   

𝑓𝑛 =  
max (𝑉(𝑡))

10
= 𝑁 × 

∫
𝑒−𝑡/𝑅𝐶

𝐶  × 𝐼𝐴(𝑡 − 𝑡′) 𝑑𝑡
𝑡

0

10
 

Finally we can substitute f back in on the right side to get  

𝑓𝑛 =  
max (𝑉(𝑡))

10
= 𝑁 × 𝑓 



This confirms the linear nature of summing current impulses.  

CONDUCTANCE INPUT 
To see how conductance input - with N again representing compounded inputs and F 

representing fraction to threshold – summates, I began by looking at the graph produced by the 

euler_illustrateRC_two_inputs_conductance.m code.  

 

If the conductance were to summate linearly, then V3 – which is the voltage when the input is 

(G1 + G2), should equal V1 + V2. However, this is not the case. So to find out what the 

relationship between F and N is, I produced this code (which doesn’t stop when the threshold is 

reached).  

%euler method simulator 

  

deltat=0.2 ; %timestep 

Tmax=50; 

tlist=linspace(0,Tmax,Tmax/deltat +1) ; 

Vlist=zeros(1,length(tlist)); 

  

maxVlist(1) = 1; 

N = 1; 

nlist = []; 

flist = []; 

  

while N < 50 

    %initialize 

    V0=0; 

    Vlist(1)=V0; 

  

    %define input conductance 

    gapplist=zeros(length(tlist)); 



    gapplist (25:30) = 1 * N; 

     

    %circuit parameters 

    R=10; 

    C=1; 

    E=11; 

  

    for n=1:length(tlist)-1 

        t=tlist(n); 

        Vlist(n+1)=Vlist(n) + ( -Vlist(n)/(R*C) + gapplist(n)*(E-

Vlist(n)) )*deltat; 

    end 

     

    maxVlist = [maxVlist max(Vlist)]; 

    fraction = max(Vlist)/ 10; 

    flist = [flist fraction]; 

    nlist = [nlist N]; 

    N = N + 1; 

  

end 

  

newmaxv = max(Vlist); 

figure 

set(gca,'FontSize',16) 

subplot(211) 

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on 

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);  

%legend('Euler Approx') 

  

subplot(212) 

plot(tlist,gapplist,'-','LineWidth',2); hold on 

xlabel('t','Fontsize',20); ylabel('gapp(t)','Fontsize',20);  

  

  

%test linearity 

Vlist1=zeros(1,length(tlist)); 

Vlist2=zeros(1,length(tlist)); 

Vlist=zeros(1,length(tlist)); 

  

%initialize 

V0=0; 

Vlist1(1)=V0; 

Vlist2(1)=V0; 

Vlist(1)=V0; 

  

%define input conductance 

gapplist1=ones(1,length(tlist)); 

gapplist2=1+sin(tlist); 

gapplist=gapplist1+gapplist2; 

  

for n=1:length(tlist)-1 



    t=tlist(n); 

    Vlist1(n+1)=Vlist1(n) + ( -Vlist1(n)/(R*C) + gapplist1(n)*(E-

Vlist1(n)) )*deltat; 

    Vlist2(n+1)=Vlist2(n) + ( -Vlist2(n)/(R*C) + gapplist2(n)*(E-

Vlist2(n)) )*deltat; 

    Vlist(n+1)=Vlist(n) + ( -Vlist(n)/(R*C) + gapplist(n)*(E-

Vlist(n)) )*deltat; 

end 

newmaxv = max(Vlist); 

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure 

set(gca,'FontSize',16) 

subplot(311) 

plot(tlist,Vlist,'-','LineWidth',2,'MarkerSize',26); hold on 

plot(tlist,Vlist1,'-','LineWidth',2,'MarkerSize',26); hold on 

plot(tlist,Vlist2,'-','LineWidth',2,'MarkerSize',26); hold on 

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);  

%legend('Euler Approx') 

  

  

set(gca,'FontSize',16) 

subplot(312) 

plot(tlist,Vlist,'.-','LineWidth',2,'MarkerSize',26); hold on 

plot(tlist,Vlist1+Vlist2,'.-','LineWidth',2,'MarkerSize',26); hold on 

xlabel('V(t)','Fontsize',20); ylabel('V(t)','Fontsize',20);  

%legend('Euler Approx') 

  

  

subplot(313) 

plot(tlist,gapplist1,'-','LineWidth',2); hold on 

plot(tlist,gapplist2,'-','LineWidth',2); hold on 

plot(tlist,gapplist,'-','LineWidth',2); hold on 

xlabel('t','Fontsize',20); ylabel('gapp(t)','Fontsize',20);  

  

% plotting f and n 

figure  

plot(nlist, flist); 

xlabel('N'); 

ylabel('F'); 

 

 This produces the following figure: 



 

Clearly, F and N correlate exponentially (rather than linearly with compounded simultaneous 

current input). This can be proven with the explicit solution of V(t): (insert starred equation and 

take out g, zero out stuff, and see how G is exponentiated).  

𝑉(𝑡) =  𝑉0𝑒𝑥𝑝 ∫
1

𝜏
+ 𝑔(𝑠)𝑑𝑠

𝑡

0

+ 𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1

𝜏
+ 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

 

Since V(0) = 0, this becomes  

𝑉(𝑡) =  𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1

𝜏
+ 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

 

Then, similar to how we defined N and f in the previous, current-based input, we can modify the 

equation as such:  

𝑓 =  
𝑉(𝑡)

10
=  

𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 ∫ (
1
𝜏 +×𝑁 × 𝑔(𝑠)) 𝑑𝑠

𝑡

𝑡′

𝑡

0

10
 

Since N is a constant, it can be pulled out of the integral:  

𝑓 =  
𝑉(𝑡)

10
=  

𝐸 ∫ 𝑑𝑡′𝑔(𝑡′) 𝑒𝑥𝑝 𝑁 ∫ (
1

𝜏𝑁 + 𝑔(𝑠)) 𝑑𝑠
𝑡

𝑡′

𝑡

0

10
 

The term 𝑒𝑥𝑝 is used to represent 𝑒𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔, and now that N is outside the integral, f correlates 

with something along the lines of 𝑒𝑁. This shows a rather exponential, than linear, relationship 

between f and N with conductance-based inputs. This makes sense, if one were to simplify the 

relationship between current, conductance, and resulting voltage with Ohm’s law. Voltage can 

correlate more directly with current. If this were integrated, it would make sense that once more 



currents are added, it would summate linearly. Voltage also correlates directly with resistance – 

but resistance is the inverse of conductance. Summing values which are inversed already hints at 

a non-linear behavior. Additionally, when something of the nature 
1

𝑥
 is integrated, it can result in 

something of the nature ln(𝑥), which can result in something of the nature 𝑒𝑥. The last few 

sentences are not meant to be a legitimate explanation of the phenomena, but rather serve as a 

way to bridge intuitive understanding.  

3. HH MODEL 

TUNING CURVE 
Code:  

% Hodgkin/Huxley Equations (V_HH = -V-65), with current definition  

% of membrane potential (V=Vin-Vout) 

clear all;  

vna=50;  %set the constants 

vk=-77; 

vl=-54.4; 

gna=120; 

gk=36; 

gl=.3; 

c=1; 

I=6.35; 

  

v_init=-65;  %the initial conditions 

m_init=.052; 

h_init=.596; 

n_init=.317; 

  

npoints=50000;  %number of timesteps to integrate 

dt=0.01;        %timestep 

  

m=zeros(npoints,1); %initialize everything to zero 

n=zeros(npoints,1); 

h=zeros(npoints,1); 

v=zeros(npoints,1); 

time=zeros(npoints,1); 

  

m(1)=m_init; %set the initial conditions to be the first entry in the 

vectors 

n(1)=n_init; 

h(1)=h_init; 

v(1)=v_init; 

time(1)=0.0; 

  

currentList = []; 

peaksList = []; 

  



for current = 0:75 

    currentList = [currentList current]; 

    I = current; 

    numpeak = 0; 

    tic 

    for step=1:npoints-1, 

        v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ... 

                   -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt; 

        m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt; 

        h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt; 

        n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt; 

        time(step+1)=time(step)+dt; 

  

        %condition for spike detection:  decreasing now, increased 

        %before, over threshold 

        thresh = 10; 

        if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)) & 

v(step)>thresh)  

          numpeak = numpeak + 1; 

        end 

    end 

    toc 

    peaksList = [peaksList numpeak]; 

end 

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure  

rateList = peaksList / 500; 

plot(currentList, rateList); 

xlabel('current'); 

ylabel('firing rate'); 

 

Result:  



 

This is what the tuning curve looks like when simply incrementing the continuously-applied 

currents. Now, we add a sinusoidal background current. The code is very similar to the tuning 

curve above, except I define an epsilon and omega in the beginning, and add this line 

immediately after the for loop which calculates voltage using steps:  

    for step=1:npoints-1, 

        I = current + (epsilon * sin(2 * pi * time(step) * omega)); 

 

Here are the results for various manipulations of epsilon:  



 

 

I’m not sure how to analyze these different graphs, so I plotted a tuning curve. Here is the code 

and resulting graph:  

% constants above this code  

epsilonList =[]; 

peaksList = []; 

omega = 5; 

current = 50; 

for epsilon = 0:500  

    epsilonList = [epsilonList epsilon]; 

    numpeak = 0; 

    tic 

    for step=1:npoints-1, 

        I = current + (epsilon * sin(2 * pi * time(step) * omega)); 

         

        v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ... 

                   -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt; 

        m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt; 

        h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt; 

        n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt; 

        time(step+1)=time(step)+dt; 

         

         

  

        %condition for spike detection:  decreasing now, increased 

              %before, over threshold 

              thresh = 10; 



              if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-

1)) & v(step)>thresh)  

                numpeak = numpeak + 1; 

              end 

    end 

    toc 

     

    peaksList = [peaksList numpeak]; 

end 

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure 

plot(time,v); 

xlabel('t'); 

ylabel('V'); 

  

figure  

rateList = peaksList / 500; 

plot(epsilonList, rateList); 

title(['FR v Epsilon w/ I bar = ' num2str(current)]); 

xlabel('epsilon'); 

ylabel('firing rate'); 

 

Result:  

 

It’s clear from this graph that with larger values of epsilon, the firing rate increases, and the rate 

of increasing decreases with larger values of epsilon.  

Here are the results for various manipulations of omega:  



 



From 1 to 99, omega keeps increasing the firing rate (as observed by the changing scale of the y-

axis). Most importantly, the curve gets smoother and smoother – approaching the shape of the 

regular tuning curve. This makes sense because the frequency, as it gets higher and to the value 

of 100, with a relatively small epsilon – you pretty much get the original tuning curve.  

OTHER ASPECTS OF THE NEURAL RESPONSE 
There are a few aspects of the neural response beyond the firing rate that come to mind. The 

resulting action potentials from the sinusoidal current input have their own aspects such as 

amplitude or width/ duration. Average voltage – as part of a tuning curve over varying epsilon 

and omega – is also an aspect that can be analyzed. I would expect the average voltage to 

increase as epsilon increases and omega to have a periodic effect, but these are simply guesses. 

This is what the tuning curve for average looks like for varying epsilon:  

 

And this is what it looks like while varying omega:  



 

It makes sense how average voltage would vary with omega – given that omega affects the 

frequency of the sinusoidal function (it would be repetitive). It also makes sense that the average 

voltage vs. epsilon graph is symmetric because the amplitude increases either way – and the 

larger fluctuations cause and overall lower average voltage (because the graph seems somewhat 

shifted downwards).  

Another aspect can be analyzing the “beats” created by the pattern of spikes. For example, below 

is a graph that shows a zoomed-in graph of voltage over current with a set omega and epsilon:  

 

There is an enveloping sinusoidal function occurring – and the properties of this function can be 

more quantifiable aspects. I wrote code to detect the frequency of this sinusoidal function, and 



was going to run it to get a graph of average frequency over different values of epsilon or omega. 

Here is the code:  

% Hodgkin/Huxley Equations (V_HH = -V-65), with current definition  

% of membrane potential (V=Vin-Vout) 

clear all;  

vna=50;  %set the constants 

vk=-77; 

vl=-54.4; 

gna=120; 

gk=36; 

gl=.3; 

c=1; 

I=0; 

  

v_init=-65;  %the initial conditions 

m_init=.052; 

h_init=.596; 

n_init=.317; 

  

npoints=50000;  %number of timesteps to integrate 

dt=0.01;        %timestep 

  

m=zeros(npoints,1); %initialize everything to zero 

n=zeros(npoints,1); 

h=zeros(npoints,1); 

v=zeros(npoints,1); 

time=zeros(npoints,1); 

  

m(1)=m_init; %set the initial conditions to be the first entry in the 

vectors 

n(1)=n_init; 

h(1)=h_init; 

v(1)=v_init; 

time(1)=0.0; 

  

freqList = []; 

omegaList = []; 

epsilon = 8; 

for omega = 31:35, 

    maxList = []; 

    for step=1:npoints-1, 

        I = 0 + (epsilon * sin(2 * pi * time(step) * omega)); 

  

        v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ... 

                   -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt; 

        m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt; 

        h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt; 



        n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt; 

        time(step+1)=time(step)+dt; 

  

        if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)))  

            %local max detected 

            maxList = [maxList [v(step);step]]; 

        end 

    end 

  

    %get index of maximums 

    indexList = []; 

    for n = 1:length(maxList)-1 

        if ((maxList(n+1)<maxList(n)) & (maxList(n)>maxList(n-1))) 

            indexList = [indexList n]; 

        end 

    end 

     

    timeDiffList = []; 

    for n = 1:length(indexList)-1 

        t1 = maxList(2, indexList(n)); 

        t2 = maxList(2, indexList(n+1)); 

        tdiff = t2 - t1; 

        timeDiffList = [timeDiffList tdiff];  

    end 

     

    meanPeriod = mean(timeDiffList); 

    meanFrequency = 1/meanPeriod; 

  

    omegaList = [omegaList omega]; 

    freqList = [freqList meanFrequency]; 

     

    disp(meanPeriod); 

end 

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure  

plot(omegaList, freqList); 

title('Beat Frequency over Omega'); 

ylabel('Beat Frequency'); 

xlabel('Omega'); 

 

I was able to get average frequency for single omega values, but unfortunately Matlab glitches 

out – with its debugger – when put in this omega for loop. Professor Shea-Brown also agreed 

that there was no logical explanation (as in the debugger was reporting the wrong error), so there 

must be some computing error occurring. I could manually plot the points, but unfortunately I 

don’t have that time, so I have decided on analyzing yet another aspect of the neural response. 

However, I’m sure that if this code runs, it would yield some significant results.  



Spike lag – the time to the first spike – could be another aspect of the neural response. This is the 

graph (along with code) of the time to the first spike over values of epsilon.  

% all the repetitive HH constants would be above this  

omega = 34; 

current = 6.35; 

epsilonList = []; 

lagList = []; 

for epsilon=0:100 

    spikeTimes = []; 

    for step=1:npoints-1, 

        I = current + (epsilon * sin(2 * pi * time(step) * omega)); 

  

        v(step+1)=v(step)+((I - gna*h(step)*(v(step)-

vna)*m(step)^3 ... 

                   -gk*(v(step)-vk)*n(step)^4-gl*(v(step)-vl))/c)*dt; 

        m(step+1)=m(step)+ (alpha_m(v(step))*(1-m(step))-

beta_m(v(step))*m(step))*dt; 

        h(step+1)=h(step)+ (alpha_h(v(step))*(1-h(step))-

beta_h(v(step))*h(step))*dt; 

        n(step+1)=n(step)+ (alpha_n(v(step))*(1-n(step))-

beta_n(v(step))*n(step))*dt; 

        time(step+1)=time(step)+dt; 

  

         %condition for spike detection:  decreasing now, increased 

         %before, over threshold 

         thresh = 10; 

         if ((step>1) & (v(step+1)<v(step)) & (v(step)>v(step-1)) & 

v(step)>thresh) 

             spikeTimes = [spikeTimes (step*dt)]; 

         end 

    end 

    lagList = [lagList spikeTimes(1)]; 

    epsilonList = [epsilonList epsilon]; 

end 

  

disp(spikeTimes(1)); 

  

set(0,'defaultaxesfontsize',20); 

set(0,'defaulttextfontsize',20);  

  

figure 

plot(epsilonList,lagList); 

xlabel('epsilon'); 

ylabel('lag'); 

 

Result:  



 

As the graph clearly shows, as values of epsilon increases, the time lag to the first spike 

decreases (i.e. getting to the first spike is faster), and eventually it doesn’t spike. This makes 

sense due to how epsilon affects the amplitude of the applied current – getting a quicker voltage 

spike.  


